
3 Lecture 2: The Standard Model

3.1 Motivation
In the previous lecture we saw that a theory for the weak interactions based on the exchange of massive
vector bosons can give a good explanation to data but faces several theoretical problems, such as the lack of
renormalizability and the violation of unitarity at relatively low energies.

Several authors soon speculated about the possibility that these problems could get solved by embedding
the IVB hypothesis into a gauge framework. QED, the theory for the electromagnetic interactions, was a good
example of such approach, as it was known to be unitary and renormalizable.

Noting the vectorial nature of both interactions, Schwinger suggested in 1957 the idea of weak and elec-
tromagnetic unification: a common theory that would describe both. Later, crucial works by Glashow [20],
who correctly identified the gauge group in 1961, and by Weinberg [21] and Salam [22], who independently
introduced the Higgs mechanism to account for the gauge boson masses (in 1967 and 1968, respectively), served
to establish the standard theory of the electroweak interactions.

Before focusing on the electroweak part of the SM we should say a few words about the strong interactions,
the other piece of the theory. The regularities found in the zoo of hadrons eventually led to the quark model,
by Gell-Mann and Zweig, which in turn led to the idea that quarks should have an internal quantum number
that allows them to respect Pauli’s exclusion principle. Indeed, JP = 3

2

+ baryons such as Ω− (sss) seemed to
violate this fundamental law. Since they are formed by three quarks of the same type (or flavor) with all the
spins aligned in the same direction, the spin wave function is symmetric. The ground state of these baryons
has zero total angular momentum, thus also implying a symmetric spatial wave function. Consequently, the
overall wave function would be totally symmetric unless quarks have an additional hidden d.o.f.. Greenberg
postulated in 1964 that this additional quantum number, called color, comes in three types, hence solving the
problem in the quark model. This led to the development of a gauge theory for the strong interactions (Quantum
ChromoDynamics, QCD) based on the SU(3) group. This theory is the second piece of the SM.

3.2 Building the SM
In this Section we will construct the SM from scratch, whereas in the next one we will discuss some of its
consequences and predictions.

Steps to construct a gauge theory

Based on what we learnt in the previous lecture, one can establish general steps to construct a gauge theory.
These are:

1. Choose the gauge group.

2. Choose the fermion representations.

In the second step we must asign representations under the gauge group to the fermions. This is equivalent
to defining the way in which they transform under the symmetry. In the previous examples we always
considered the fundamental representation of SU(2), the doublet, but other possibilities exist.

One important check must be applied once the fermion representations are decided: the cancellation of
gauge anomalies. We will come back to this issue below.

3. Choose the scalar representations.

We must introduce scalar fields to break the gauge symmetry spontaneously and give masses to the massive
gauge bosons.

4. Write the most general renormalizable Lagrangian invariant under the gauge symmetry.

5. Minimize the scalar potential and shift the scalar fields in such a way that the minimum of
the potential is located at the origin of the new scalar fields.

Once these five steps are followed the gauge model is fully defined and one can start deriving physical
consequences. Let us now go through these five steps for the SM.
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Step 1: Gauge group

The first step is to choose the gauge group for our unified theory for the weak and electromagnetic interactions.
Given that the weak charged currents are of the form

Jcc
µ = ψ1γµ (1− γ5)ψ2 ≡ 2ψ1Lγµψ2L , (76)

with (ψ1, ψ2) = (νe, e
−) , (u, d), . . . , the simplest possibility is to consider the SU(2) group and assume that the

ψ1 and ψ2 fermions, or more precisely, their left-handed components, form a doublet

ψL =

 ψ1

ψ2


L

. (77)

In this way, the W± gauge bosons will mediate interactions between the members of the doublet and SU(2)
can be denoted as SU(2)L as it only involves left-handed fermions. What about electromagnetism? The SU(2)
group has three generators: T1,2,3. T1 and T2 combine to the T± generators, associated with the W± bosons.
Could T3 be associated with the photon? In other words: is T3 = Q?

There are several arguments which show that this is not possible. Technically, one can show that Q does
not close the SU(2) algebra with T+ and T−, and thus cannot be T3 (which necessarily does). The reason is
easy: in order for Q to bea generator of SU(2) the charges of a complete multiplet must add up to zero, due to
the requirement that the SU(2) generators must be traceless. In this case we see that the charges of ψ1 and ψ2

(νe and e−, for instance) do not satisfy this condition. A second argument, perhaps more clear, is that while
the generators T± will generate interactions of the V-A form, Q must generate vectorial (ψ1γµψ1) interactions.

This led Glashow to a simple but crucial idea: instead of just SU(2), the correct gauge group for the
electroweak interactions is SU(2)×U(1). This means that two gauge groups will coexist in the theory and their
generators will commute. As we will see, the introduction of this extra U(1) factor works.

In order to identify the nature of the additional U(1) piece let us consider the first fermion family, composed
by 2

νeL, eL, eR, uL, uR, dL, dR . (78)

The electric charge operator Q is a conserved charge of the theory and can be computed using the Noether
theorem from the integration of the zero component of the electromagnetic current,

Jem
µ = qi ψiγµψi ⇒ Q =

∫
d3xJem

0 , (79)

obtaining

Q =

∫
d3x

(
qee
†e+ qνeν

†
eνe + quu

†u+ qdd
†d
)

=

∫
d3x

(
−e†e+

2

3
quu
†u− 1

3
qdd
†d

)
=

∫
d3x

(
−e†LeL − e†ReR +

2

3
u†LuL +

2

3
u†RuR −

1

3
d†LdL −

1

3
d†RdR

)
. (80)

Here we have used qe = −1 , qνe = 0 , qu = 2
3 , qd = − 1

3 . Similarly, the T3 generator is also a conserved charge
of the theory and can be computed from the zero component of the weak current. Due to the SU(2) underlying
symmetry and the left-handed chirality of the involved fermions, the weak charged current can be generalized
to

Jaµ = ψLγµ
τa
2
ψL , (81)

with a = 1, 2, 3. The currents J1,2
µ can be combined to give the charged current Jcc

µ , whereas J3
µ is found to be

J3
µ = ψLγµ

τ3
2
ψL =

=
1

2

(
ψ1 ψ2

)
L
γµ

 1 0

0 −1

 ψ1

ψ2


=

1

2

(
ψ1Lγµψ1L − ψ2Lγµψ2L

)
. (82)

2Note that we decided not to include right-handed neutrinos in this list. As we will see later in this lecture, this will have
important consequences.
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Group Gauge coupling Gauge bosons

SU(3)c gs Gaµ a = 1, . . . , 8 gluons

SU(2)L g W a
µ a = 1, . . . , 3 W bosons

U(1)Y g′ Bµ B boson

Table 1: Standard Model gauge groups, couplings and bosons.

And then, the T3 generator is found to be

T3 =

∫
d3xJ3

0

=
1

2

∫
d3x

(
νe
†
LνeL − e†LeL + u†LuL − d†LdL

)
. (83)

Now it is easy to see that the combination

Q− T3 =

∫
d3x

[
−1

2

(
νe
†
LνeL + e†LeL

)
+

1

6

(
u†LuL + d†LdL

)
− e†ReR +

2

3
u†RuR −

1

3
d†RdR

]
(84)

gives the same quantum numbers to all members of an SU(2) doublet. For this reason, it commutes with the
SU(2) generators and we can identify it with the generator of the additional U(1) piece. We choose 3

Y = Q− T3 (85)

as the generator of the U(1) group and refer to Y as the “hypercharge”.
We then conclude that the electroweak interactions are described by the gauge group SU(2)L×U(1)Y . The

other SM piece, the strong interactions, are described by an SU(3) gauge theory associated to the three colors
of quarks. Therefore,

SU(3)c × SU(2)L × U(1)Y (86)

is the complete gauge group of the SM. Table 1 summarizes this conclusion and shows how the gauge bosons
and couplings are denoted.

Step 2: Fermion representations

We have already discussed fermions representations when picking up the gauge group. Left-handed fermions
are doublets of SU(2)L whereas right-handed fermions are singlets (they do not transform under the gauge
group and hence they do not couple to the gauge bosons). Their hypercharge is obtained from the Y = Q− T3

relation, which leads to the analog of the famous Gell-Mann – Nishijima formula Q = T3 + Y . Finally, quarks
are in the fundamental (triplet) representation of SU(3)c. All these details are summarized in Table 2, which
displays the quantum numbers for the SM fermion representations. The lepton and quark doublets are denoted
as

`L =

 νe

e


L

, qL =

 u

d


L

. (87)

One of the first things that one notices when looking at Table 2 is the absence of right-handed neutrinos. We
then followed the original choice made by the fathers of the SM, who did not consider a νR representation. If
introduced, the right-handed neutrino would transform as (1, 1)0 under the SM gauge group, where we indicate
the SU(3)c × SU(2)L representations in brackets and the U(1)Y charge as subindex. Such a state would be
a complete singlet and would not participate in gauge interactions. In what concerns the phenomenological
implications of not introducing a a νR field, there are two immediate consequences: (i) all neutrinos must be
observed to have left chirality, and (ii) neutrinos must be massless (as we will see below). These two features were
phenomenologically acceptable in the 60’s, and thus right-handed neutrinos were not introduced for economical
reasons. We will nevertheless come back to this point later.

Another important detail about Table 2 is that each fermion representation comes in three copies, known
as generations or families. Even though we will generically use the notation for the first generation to refer to

3The normalization of the hypercharge generator is a convention and many authors prefer the definition Y = 2 (Q− T3). One
must therefore be careful when comparing different texts.
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Representation SU(3)c SU(2)L U(1)Y

`L 1 2 − 1
2

eR 1 1 −1

qL 3 2 1
6

uR 3 1 2
3

dR 3 1 − 1
3

Table 2: Standard Model fermion representations. There are three generations of each representation.

Figure 5: Generic triangle Feynman diagrams that induce unwanted gauge anomalies.

any of them, let us introduce the usual notation:

1st generation:

 νe

e


L

, eR ,

 u

d


L

, uR , dR (88)

2nd generation:

 νµ

µ


L

, µR ,

 c

s


L

, cR , sR (89)

3rd generation:

 ντ

τ


L

, τR ,

 t

b


L

, tR , bR (90)

The fact that the SM fermions are replicated in three generations does not follow from gauge invariance but it
is just an experimental observation. Indeed, it would be perfectly consistent, from the theory point of view, to
have only one family of fermions. We will comment on this issue in lecture 3.

We are done assigning fermion representations. At this point in the construction of a gauge theory, there is
always a crucial check one must go through: one must make sure that gauge anomalies cancel.

In QFT, some loop corrections can violate a classical local conservation law derived from gauge invariance.
These so-called anomalies are usually induced by Feynman diagrams such as that in Fig. 5, with fermions
running in the loop and vector bosons in the external legs. Unless they cancel exactly, the presence of these
diagrams can cause consistency issues that completely spoil the high-energy validity of our theory. In particular,
renormalizability would not be guaranteed.

Let us consider a generic chiral theory in which left- and right-handed fermions couple differently to the
gauge bosons. The interaction Lagrangian is given by

L = −g
(
RγµT aRR+ LγµT aLL

)
V aµ , (91)

where T aL,R are the generators in the left and right representations of the matter fields and V aµ are the gauge
bosons. Then the theory will be anomaly free if

Aabc = AabcL −AabcR = 0 , (92)

with
AabcL,R = Tr

[{
T aL,R, T

b
L,R

}
T cL,R

]
. (93)
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Representation SU(3)c SU(2)L U(1)Y

Φ 1 2 1
2

Table 3: Standard Model scalar representation.

We then see that anomalies are likely to appear in model with T aL 6= T aR. For this reason, in case of the SM we
must be concerned about the electroweak group SU(2)L × U(1)Y . In fact, it is possible to show that the only
relevant triangles are SU(2)2

L U(1)Y and U(1)3
Y , given by

SU(2)2
L U(1)Y : Tr

[{
τa, τ b

}
Y
]

= Tr
[{
τa, τ b

}]
Tr [Y ] ∝

∑
doublets

Y , (94)

U(1)3
Y : Tr

[
Y 3
]
∝

∑
fermions

Y 3 , (95)

and then the computation of the relevant AabcLLY and AabcY Y Y anomalies just requires evaluating these two sums.
Notice that for the first one we just have to evaluate the sum on the SU(2)L doublets, since for singlets there is
no contribution to the anomaly as they do not couple to the SU(2)L gauge bosons. For the second, in contrast,
one must compute both sums (left- and right-handed fermions) and substract their contributions. One finds

AabcLLY ∝
∑

doublets

Y = Y (`L) + 3Y (qL) = −1

2
+ 3 · 1

6
= 0 , (96)

and

AabcY Y Y ∝
∑

fermions

Y 3
L − Y 3

R =

[
2 ·
(
−1

2

)3

+ 2 · 3 ·
(

1

6

)3
]
−
[

(−1)3 + 3 ·
(

2

3

)3

+ 3 ·
(
−1

3

)3
]

= 0 . (97)

The factors of 3 in these two evaluations are due to the 3 quark colors and the factors of 2 come from the fact
that left-handed fermions are doublets (and thus they have multiplicity 2).

Therefore, we conclude that the SM is anomaly free. This is true for each complete generation of fermions
(a fact that was used, for example, to predict the existence of the top quark) due to a conspiracy between the
quark and lepton sectors, which cancel each other’s anomaly perfectly.

Step 3: Scalar representations

In order to break the gauge symmetry one must introduce scalar representations. In the SM one takes the
simplest possibility: a single scalar doublet Φ,

Φ =

 φ+

φ0

 , (98)

with Y = 1/2 and singlet under SU(3)c, as summarized in Table 3. This doublet is usually called the Higgs
doublet.

Step 4: Most general Lagrangian

Since we are mostly interested in the electroweak sector we will omit SU(3)c interactions from now on.
With the ingredients introduced so far, the most general Lagrangian invariant under SU(3)c×SU(2)L×U(1)Y

is
L = Lgauge + Lkin + LΦ − LY . (99)

The first piece is the pure gauge Lagrangian,

Lgauge = −1

4
W a
µνW

µν
a −

1

4
BµνB

µν , (100)

with the gauge-field tensors

W a
µν =∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (101)

Bµν =∂µBν − ∂νBµ . (102)
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The second piece, Lkin, corresponds to the fermion kinetic terms in which the usual derivatives have been
replaced by covariant derivatives,

Lkin =
∑
ψ

ψ iγµDµψ , (103)

with ψ = {`L, eR, qL, uR, dR}. The covariant derivative can generally be written as

Dµψ =
(
∂µ − ig ~T ~Wµ − ig′Y Bµ

)
ψ . (104)

For instance, for the lepton doublet `L this is

Dµ`L =

(
∂µ − ig

~τ

2
~Wµ + i

g′

2
Bµ

)
`L , (105)

whereas for the lepton singlet one has
DµeR = (∂µ + ig′Bµ) eR . (106)

LΦ includes the kinetic term for the Φ scalar doublet (with the usual derivatives replaced by covariant ones)
and its scalar potential,

LΦ = (DµΦ)
†
DµΦ− V (Φ) , (107)

with
DµΦ =

(
∂µ − ig

~τ

2
~Wµ − i

g′

2
Bµ

)
Φ (108)

and
V (Φ) = µ2Φ†Φ + λ

(
Φ†Φ

)2
. (109)

We note that V (Φ) is the most general scalar potential allowed by SU(2)L × U(1)Y . For example, the gauge
symmetry forbids a possible Φ3 term. Finally, LY contains Yukawa interactions allowed by the gauge symmetry,

LY = Ye `LΦeR + Yu qLΦ̃uR + Yd qLΦdR + h.c. , (110)

where Φ̃ = iτ2Φ∗ is the conjugate of Φ with well defined transformations (doublet of SU(2)L with Y = −1/2).
We note that Ye,u,d are generic 3 × 3 complex matrices since all fermions in this Lagrangian come in three
families.

We emphasize once again that this Lagrangian does not contain any mass term for the fermions and gauge
bosons. These are all forbidden by the gauge symmetry.

Step 5: Symmetry breaking

As we already know, the quartic coupling λ must be positive for the potential to be bounded from below. Now,
if µ2 < 0 the minimum of the potential is not at 〈Φ〉 = 0, but at

〈Φ〉 =
1√
2

 0

v

 , with v =

√
−µ2

λ
. (111)

This, known as the Higgs VEV, spontaneously breaks the gauge symmetry. But what is the remnant symmetry
(if any) after symmetry breaking? It is easy to see that the four generators of SU(2)L × U(1)Y are broken in
the vacuum given by 〈Φ〉. The vacuum is left invariant by a generator G if

eiαG〈Φ〉 = 〈Φ〉 , (112)

which, for an infinitesimal transformation (α� 1), leads to

eiαG〈Φ〉 ' (1 + iαG) 〈Φ〉 (113)
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which implies G〈Φ〉 = 0. In this case we say that “G annihilates the vacuum”. We can now apply all four
generators of the electroweak gauge group to the vacuum. We find

T1〈Φ〉 =
τ1
2
〈Φ〉 =

1

2

 0 1

1 0

 0

v√
2

 =
1

2

 v√
2

0

 6=
 0

0

 Broken (114)

T2〈Φ〉 =
τ2
2
〈Φ〉 =

1

2

 0 −i
i 0

 0

v√
2

 = − i
2

 v√
2

0

 6=
 0

0

 Broken (115)

T3〈Φ〉 =
τ3
2
〈Φ〉 =

1

2

 1 0

0 −1

 0

v√
2

 = −1

2

 0

v√
2

 6=
 0

0

 Broken (116)

Y 〈Φ〉 = YΦ〈Φ〉 = +
1

2
〈Φ〉 =

1

2

 0

v√
2

 6=
 0

0

 Broken (117)

However, if we examine the effect of the electric charge operator Q on the vacuum we find

Q〈Φ〉 = (T3 + Y ) 〈Φ〉 =
(τ3

2
+ YΦ

)
〈Φ〉 =

1

2

 1 0

0 0

 0

v√
2

 =

 0

0

 Unbroken (118)

We find that electric charge is unbroken even after SSB. Therefore, the resultant symmetry breaking pattern is

SU(2)L × U(1)Y → U(1)em (119)

and the Higgs VEV preserves electric charge conservation.
With these five steps the SM is fully defined. In the next section we will derive some consequences and

predictions of the model.

3.3 Consequences and predictions
Gauge boson masses

In order to compute the particle spectra we start by going to the unitary gauge, in which the would-be Goldstones
do not appear and the interpretation of the analytical results is more transparent. Analogously to what we saw
in the first lecture, in this gauge Φ is given by

Φ =
1√
2

(v + h)

 0

1

 =
1√
2

(v + h) χ , (120)

where h = h(x) is the physical scalar field with vanishing VEV (〈h〉). The gauge boson masses are contained in
the (DµΦ)

†
DµΦ piece of LΦ. Since we are not interested at the moment in the interactions, we can concentrate

on the terms

LGB
m = Φ†

(
ig
~τ

2
~Wµ + i

g′

2
Bµ

)(
−ig~τ

2
~Wµ − ig

′

2
Bµ
)

Φ =
v2

8
χTMµM

µχ , (121)

with

Mµ =g~τ ~Wµ + g′Bµ

=

 gW 3
µ + g′Bµ g

(
W 1
µ − iW 2

µ

)
g
(
W 1
µ + iW 2

µ

)
−gW 3

µ + g′Bµ


=

 gW 3
µ + g′Bµ

√
2gW+

µ√
2gW−µ −gW 3

µ + g′Bµ

 , (122)

where we have identified the charged mass eigenstates

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (123)
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Now, operating we get

LGB
m =

v2

8

[
2g2W−µ W

+µ +
(
g′Bµ − gW 3

µ

)2] ≡ m2
WW

−
µ W

+µ +
1

2

(
V 0
µ

)TM2
V 0V 0µ . (124)

The W 1,2
µ gauge bosons have been combined into a pair of charged gauge bosons W±µ , with mass

m2
W =

g2v2

4
. (125)

On the other hand, the neutral gauge bosons V 0
µ =

(
Bµ,W

3
µ

)T mix, with mass matrix

M2
V 0 =

v2

4

 g′
2 −gg′

−gg′ g2

 . (126)

We must diagonalize this matrix to get the mass eigenstates and eigenvalues. This is done by means of the
following unitary transformation

V 0
µ =

 Bµ

W 3
µ

 =

 cos θW − sin θW

sin θW cos θW

 Aµ

Zµ

 ≡ RV 0 V̂ 0
µ , (127)

which is equivalent to the linear combinations

Aµ = cos θW Bµ + sin θW W 3
µ , (128)

Zµ =− sin θW Bµ + cos θW W 3
µ . (129)

The unitary matrix RV 0 diagonalizesM2
V 0 as

(
V 0
µ

)TM2
V 0V 0µ =

(
V̂ 0
µ

)T
RTV 0M2

V 0RV 0 V̂ 0µ ≡
(
V̂ 0
µ

)T
M̂2

V 0 V̂ 0µ

=
(
Aµ Zµ

) m2
A 0

0 m2
Z

 Aµ

Zµ

 , (130)

with

m2
A = 0 , (131)

m2
Z =

v2

4

(
g2 + g′

2
)
, (132)

and
sin θW =

g′√
g2 + g′2

, cos θW =
g√

g2 + g′2
, (133)

or, equivalently, tan θW = g′

g . The angle of rotation θW is usually referred to as the “weak mixing angle” 4.
As Eq. (131) clearly shows, the Aµ gauge boson remains massless after SSB. This gauge boson can thus be

identified with the photon, which must be massless due to the conservation of U(1)em. The other neutral gauge
boson, the Z-boson, is massive. We find an important relation between its mass and that of the W -boson, given
in Eq. (125),

ρ =
m2
W

cos2 θW m2
Z

= 1 . (134)

This ratio, which also represents the relative strength of the neutral and charged interactions (as we will see
below) is equal to 1 only due to the specific scalar sector that we have chosen. If instead of just the doublet Φ
we had introduced other scalar representations with non-zero VEVs, the ρ parameter could have easily departed
from 1. Therefore, ρ = 1 is a definite (tree-level) prediction of the SM.

4It is also common to use the name “Weinberg angle”, but this seems to be unfair as the parameter appeared for the first time
in Glashow’s classical paper [20].
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Scalar mass: the Higgs boson

After SSB the model contains the real scalar field h. This field is the so-called Higgs boson and can be seen
as the footprint left by SSB (the Higgs mechanism). Its mass can be easily derived by replacing the shifted
parameterization of Φ into V (Φ). One finds

V (Φ) ⊃ −µ2h2 =
1

2
m2
hh

2 , (135)

which then implies
mh =

√
−2µ2 , (136)

with m2
h > 0, since µ2 < 0.

Fermion masses

We now turn our attention to the fermion masses. As already pointed out, all fermions are massless before SSB
since their mass terms are forbidden by the gauge symmetry. However, their masses are generated after SSB
thanks to the Yukawa terms in LY . For example, for the leptons this is given by 5

L`Y = Ye`LΦeR + h.c. . (137)

Then, using the already familiar expression for Φ in the unitary gauge, one finds

L`Y =Ye`LΦeR + h.c. =
1√
2

(v + h)Ye

(
ν e

)
L

 0

1

 eR + h.c.

=MeeLeR +
Me

v
heLeR + h.c. , (138)

where
Me =

v√
2
Ye (139)

is the 3× 3 mass matrix for the charged leptons. We note that neutrinos do not get masses this way. This fact
can be traced back to the absence of right-handed neutrinos in the theory.

Similarly, one gets 3 × 3 mass matrices for the up- and down-type quarks. The complete fermion mass
Lagrangian is

LFm =MeeLeR +MuuLuR +MddLdR + h.c. , (140)

with
Mf =

v√
2
Yf , (141)

with f = e, u, d. It is definitely remarkable that the same mechanism that gives mass to the gauge bosons
(SSB), also gives a mass to the fermions. Now, in general these three mass matrices are not diagonal, since the
Ye,u,d are general complex matrices. In order to obtain mass eigenstates and eigenvalues, the mass matrices in
Eq. (141) must be brought to a diagonal form. Since all mass in terms in LFm are of Dirac type, this must be
done by means of biunitary transformations.

Given a matrixM, there exist two unitary matrices U and V (UU† = U†U = I and V V † = V †V = I) such
that

U†MV = M̂ , (142)

where M̂ is diagonal with positive eigenvalues. U and V can be found by noticing that they diagonalizeMM†
andM†M, respectively:

U†MV = M̂ ⇒ M̂2 = U†MV V †M†U = U†MM†U , (143)

U†MV = M̂ ⇒ M̂2 = V †M†UU†MV = V †M†MV . (144)

In our case, this can be applied toMe,u,d. The unitary matrices U and V are independent transformations of
the left- and right-handed fermions, respectively, connecting the original gauge bases to the mass bases (ê, û,
d̂),

fL =Uf f̂L , (145)

fR =Vf f̂R , (146)
5We have defined the Yukawa Lagrangian LY with a convenient negative sign in Eq. (99) so that the resulting mass terms will

be proportional to Yf , and not to −Yf . This is due to the fact that mass terms come with a negative sign in the Lagrangian, see
for instance the Dirac Lagrangian in Eq. (25).
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with f = e, u, d, and then
M̂f = U†fMfVf (147)

is the diagonal mass matrix in the mass bases. For instance, in case of the charged leptons one finds

M̂e = U†eMeVe = diag (me,mµ,mτ ) , (148)

with me,µ,τ the physical masses of the SM charged leptons.

The charged current

In order to obtain the interaction Lagrangian for the W -boson and identify the currents with those of the V-A
theory we must have a look at the fermion gauge interactions in Lkin. The relevant terms are

Lkin ⊃ `L
(
g
~τ

2
~Wµ −

g′

2
Bµ

)
γµ`L + qL

(
g
~τ

2
~Wµ +

g′

6
Bµ

)
γµqL

− eRg′BµγµeR + uR
2

3
g′Bµγ

µuR − dR
1

3
g′Bµγ

µdR

= gJ1
µW

1µ + gJ2
µW

2µ + gJ3
µW

3µ + g′JYµ B
µ , (149)

where J1,2,3,Y
µ are implicitly defined in the previous expression,

J1
µ =

1

2
(νLγµeL + uLγµdL + h.c.) , (150)

J2
µ =− i

2
(νLγµeL + uLγµdL − h.c.) , (151)

J3
µ =

1

2

(
νLγµνL − eLγµeL + uLγµuL − dLγµdL

)
, (152)

JYµ =
1

2

(
−3 νLγµνL − 3 eLγµeL + uLγµuL + dLγµdL − 6 eRγµeR + 4uRγµuR − 2 dRγµdR

)
. (153)

The first two currents (J1
µ and J2

µ) are charged (since W 1,2
µ combine to give W±µ ) and the last two are neutral

(since W 3
µ and Bµ lead to Aµ and Zµ). Let us first focus on the charged current. This is given by

Lcc =gJ1
µW

1µ + gJ2
µW

2µ

=
g√
2

[(
J1 + iJ2

)
µ
W+µ +

(
J1 − iJ2

)
µ
W−µ

]
=

g√
2

[
J+
µW

+µ + h.c.
]
, (154)

where we have used the definition of the W±µ bosons, which can be inversed to give

W 1
µ =

1√
2

(
W+ +W−

)
µ
, (155)

W 2
µ =

i√
2

(
W+ −W−

)
µ
, (156)

and have defined J+
µ = J1

µ + iJ2
µ. Using now our expressions for J1

µ and J2
µ, Eqs. (150) and (151), we finally get

J+
µ = νLγµeL + uLγµdL =

1

2
[νγµ(1− γ5)e+ uγµ(1− γ5)d] =

1

2
Jµ , (157)

where Jµ is the V-A current we introduced in the V-A and IVB theories. Therefore, we can do the same
identification with the low-energy effective theory, leading to

g2

8m2
W

=
GF√

2
. (158)

Using now the W -boson mass in Eq.(125), one finds

v =
(√

2GF

)−1/2

' 246GeV , (159)

where we have used the numerical value GF = 1.166 · 10−5 GeV−2. The message behind Eq. (159) is clear:
the electroweak VEV v and the Fermi constant are actually the same quantity. Even more: the Fermi scale is
generated by the Higgs doublet VEV!
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There is one more thing that we must do to get Lcc in terms of physical states (mass eigenstates). As
explained above, we must rotate to the fermion mass bases using the Uf , Vf unitary transformations. Therefore,
the quark charged current interaction Lagrangian becomes

Lqcc =
g√
2
ûLγµVCKMd̂LW

+µ + h.c. , (160)

where we have defined
VCKM = U†uUd , (161)

a 3 × 3 unitary matrix, obtained from the product of the left u and d rotations. This is the famous Cabibbo-
Kobayashi-Maskawa (CKM) matrix, introduced by Kobayashi and Maskawa in 1973 [23]. The elements of this
matrix determine the relative size of different quark flavor transitions in charged current interactions.

It is instructive to count the number of physical parameters in VCKM. A general n× n unitary matrix has

n2 real parameters :
n(n− 1)

2
angles +

n(n+ 1)

2
phases . (162)

However, not all these parameters are physical, since one can absorbe some phases by rephasing the fields

ui → eiφiui , dj → eiθjdj ⇒ V ijCKM → V ijCKM ei(θj−φi) , (163)

and in this way one can eliminate 2n− 1 unphysical phases. Therefore, we are left with

(n− 1)2 physical real parameters :
n(n− 1)

2
angles +

(n− 1)(n− 2)

2
phases . (164)

Let us now consider two cases:

• 2 generations (n = 2): 1 angle

If we only had two quark generations, ûi = (û, ĉ) and d̂i = (d̂, ŝ), the CKM matrix would be parameterized
by a single angle,

V 2×2
CKM =

 cos θc sin θc

− sin θc cos θc

 , (165)

where θc is the Cabibbo angle [12] discussed in the first lecture.

• 3 generations (n = 3): 3 angles + 1 phase

For the realistic case of 3 quark generations, the CKM matrix is parameterized in terms of 3 angles and 1
imaginary phase,

V 3×3
CKM =


c13c12 s12c13 s13e

−iδ

−s12c23 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − s13c23c12e
iδ −s23c12 − s13s12c23e

iδ c23c13

 , (166)

where cij ≡ cos θij and sij ≡ sin θij . The fact that a phase appears in the quark mixing matrix is crucial to
allow for CP violating effects in the quark sector. As we have seen, this requires at least 3 quark generations.

Let us now consider the charged current in the lepton sector. We could in principle proceed in the same
way, rotating eL and νL to their mass eigenstate by means of unitary transformations. However, neutrinos are
massless, an thus completely degenerate. This implies that νL = ν̂L and rotations in the neutrino flavor space
have no effect (they leave the physics unchanged). Therefore, one can always select a specific neutrino rotation
matrix Uν such that the resulting L`cc is as simple as possible. In particular, one can choose Uν = Ue, so that
L`cc includes the product U†eUe = I, which leads to simply

L`cc =
g√
2
ν̂LγµêLW

+µ + h.c. . (167)

The absence of a leptonic mixing matrix, analog of the CKM matrix in the quark sector, is hence a consequence
of the neutrinos being massless.
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The neutral currents

Let us now discuss the neutral currents. These are given by

Lnc = gJ3
µW

3µ + g′JYµ B
µ

= gJ3
µ (cos θWZ

µ + sin θWA
µ) + g′JYµ (− sin θWZ

µ + cos θWA
µ)

=
(
g sin θWJ

3
µ + g′ cos θWJ

Y
µ

)
Aµ +

(
g cos θWJ

3
µ − g′ sin θWJYµ

)
Zµ . (168)

One can now make use of the definition of θW to show that g sin θW = g′ cos θW and identify this combination
as e, the fundamental electric charge,

e = g sin θW = g′ cos θW . (169)

Moreover, one can also check by direct computation that

Jem
µ = J3

µ + JYµ =
∑
f

qffγµf , (170)

as expected due to the generators relation Q = T3 + Y . With these two inputs we can rewrite

Lnc = eJem
µ Aµ +

[
g cos θWJ

3
µ − g′ sin θW

(
Jem
µ − J3

µ

)]
Zµ

= eJem
µ Aµ +

g

cos θW

(
J3
µ − sin2 θWJ

em
µ

)
Zµ , (171)

where we just used g′ = g tan θW and basic trigonometry. We have then recovered the QED Lagrangian, with
Aµ the photon as anticipated, and new neutral currents mediated by the massive Z-boson.

Before concluding our discussion of the neutral current we should make an observation. As for the charged
currents, we should now rotate the fermion gauge eigenstates into the physical mass eigenstates. However, just
by looking at the form of J3

µ and JYµ (or Jem
µ ), we see that all neutral currents are of the form

fXγµfX , (172)

with X = L,R. Therefore, when we transform f → f̂ , the rotation matrices cancel out since they are unitary:
U†U = V †V = I3×3. This implies that we can simply replace the gauge eigenstates by the mass eigenstates in
Eq. (171) without introducing any rotation matrix in the neutral currents. Furthermore, this in turn means
that, in contrast to the charged currents where the off-diagonal terms of VCKM induce flavor violating transitions
(such as W+ → su), neutral currents conserve flavor and processes like Z → uc cannot take place at tree-level.

The absence of flavor changing neutral currents (FCNC) at tree-level is caused by the fact that fermion
families are exact replicas: fermions with the same charge and chirality have the same gauge quantum numbers.
This was the original motivation that led Glashow, Iliopoulos and Maiani (GIM) [24] to postulate the existence
of the charm quark, with the same quantum numbers as the up quark. As we see, the GIM mechanism, as
we currently know the absence of tree-level FCNCs due to family replication, is perfectly understood in the
framework of the SM.

Unitarity and renormalizability

Does the SM solve the problems of the IVB: unitarity and renormalizability? Indeed it does!
For instance, let us consider the scattering process νeν̄e → W+

LW
−
L , with W±L longitudinally polarized W -

bosons. We saw in lecture 1 that the IVB leads to unitarity violation in this process since σ ∝ s grows with
the energy. In the SM, however, this is not the case. Now, this scattering receives two contributions, from
the diagrams shown in Fig. 6. It is possible to show that th dangerous terms leading to the growth of σ
with the energy are present in both contributions, but they come with opposite signs and cancel exactly in
the total amplitude. The reason behind this cancellation is the gauge symmetry. Other examples of this good
high-energy behavior exist. A famous example is e+e− → W+

LW
−
L . Again, the cancellation requires to include

all contributions, including in this case the s-channel exchange of a Higgs boson.
The proof of the renormalizability of the SM was given by Veltman and ’t Hooft [25–27] in a series of works

in 1971 and 1972. In fact, the proof extends to all gauge theories, with or without SSB.
Therefore, with unitarity and renormalizability saved, these two consistency issues in the pre-SM theories

are no longer a problem. Finally, a consistent theory for the electromagnetic and weak interactions has been
built.
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Figure 6: Feynman diagrams leading to νeν̄e → W+
LW

−
L in the SM. The diagram on the left was also present

in the IVB theory, whereas the one on the right is a new contribution in the SM.

Figure 7: A picture, taken and scanned in 1972, showing a neutral current interaction taking place at the
Gargamelle bubble chamber. The neutrino, which leaves no track in the detector, entered the bubble chamber
from the bottom of this image and hit an electron by exchanging a neutral Z-boson.

The discovery of the W and Z bosons

After such a long theoretical discussion it is time to focus again on experimental facts. Having an elegant theory
does not guarantee that it describes reality.

By the beginning of the 70’s, a viable theory for the electromagnetic and weak interactions was proposed.
This was a clear challenge for the experimental groups, which had to show whether or not this theory was
connected to the real world. The first great discovery was that of neutral currents by the Gargamelle bubble
chamber at CERN in 1973. This huge detector photographed the tracks of a few electrons suddenly starting
to move, seemingly of their own accord (see Fig. 7). This was interpreted as a neutrino interacting with the
electron by the exchange of an unseen Z-boson.

Although this already allowed to get some information about the underlying the theory (the increasingly
popular SM), the next required step was the actual discovery of the intermediate bosons exchanged in the
electroweak interactions: the W and Z bosons. This came a few years later, in 1983, with observations in the
UA1 and UA2 experiments at the CERN Super Proton Synchrotron (SPS), a collider with a high enough center
of mass energy. This strong confirmation gave the final and decisive support to the electroweak theory.

SM parameters

Before concluding, let us consider the free parameters in the SM and give, for future reference, their measured
values. The free fundamental Lagrangian parameters in the electroweak sector of the SM are:

• Fundamental parameters: g, g′, v, λ, Yf

In practice, these fundamental parameters are traded for other derived parameters, more directly connected to
experimental measurements:

• Derived parameters: α, mW , mZ , mh, mf , VCKM

Here mf are the masses of the SM fermions and α is the electromagnetic fine structure constant. Although
these expressions have been given already, let us rewrite the connection between the derived parameters and
the fundamental ones. These is obtained via the relations

g =
e

sin θW
, g′ =

e

cos θW
, (173)
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Parameter Meaning Experimental value Measured by

α−1 Fine structure constant (inverse) 137.035999074(44) Harvard cyclotron (ge)

mW W -boson mass (80.387± 0.016) GeV LEP2 / Tevatron / LHC

mZ Z-boson mass (91.1876± 0.021) GeV LEP1 / SLD

mh Higgs boson mass (125.6± 0.4) GeV LHC

Table 4: Standard Model free parameters as quoted by the Particle Data Group (PDG) [28]. The fine structure
constant α is given at q2 = 0.

as well as

α =
e2

4π
, mW =

gv

2
, mZ =

mW

cos θW
, mh =

√
2λ v , mf =

v√
2
Yf . (174)

Since there are more experiments than free parameters, the model can be tested in many independent ways.
Three decades and many experiments finally led to the measurement of all them, including the Higgs mass in
2012. Leaving aside the flavor-related parameters (mf and VCKM), these are listed in Table 4.

3.4 Summary of the lecture
The construction of the SM and the derivation of its fundamental properties have been the subject of this lecture,
central to the course. Without any doubts, the SM constitutes one of the greatest scientific achievements of
mankind. However, as we will see in the next lecture, it cannot be the final truth, as several indications clearly
points towards new physics beyond the SM.

3.5 Exercises
Exercise 2.1 Consider the SM extended with a real scalar Ω with quantum numbers (1, 3)0 under the SM
gauge group and decomposed in SU(2)L components as

Ω =


Ω+

Ω0

Ω−

 . (175)

Show that 〈Ω0〉 6= 0 implies ρ 6= 1.

Exercise 2.2 Show that νeνe →W+
LW

−
L has a good high-energy behavior in the SM.
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