An introduction to the B-anomalies

- Lecture 3 - Model-dependent interpretation

Avelino Vicente

IFIC – CSIC / U. Valencia

Post-FPCP School

Hyderabad July 2018

Summary of this lecture

- 1) Models, models and models
- 2) $b \rightarrow s$ anomalies and dark matter
- 3) A gauge explanation of the B-anomalies

Models, models and models

New Physics explanations

Z' boson, leptoquarks, compositeness, RPV loops

Charged current

Charged Higgs, leptoquarks, compositeness, W' boson, RPV sfermions

+ EFTs, of course

Z': what do we need?

Z' model building

Easiest (but not unique) solution to the b-s anomalies

List of "ingredients":

- A Z' boson that contributes to \mathcal{O}_9 (and optionally to \mathcal{O}_{10})
- The Z' must have flavor violating couplings to quarks
- The Z' must have non-universal couplings to leptons

More about this later!

Solving the $b \to s$ anomalies

[Aristizabal Sierra, Staub, AV, 2015]

$$\mathcal{O} = (\bar{s}\gamma_{\alpha}P_L b) \ (\bar{\mu}\gamma^{\alpha}P_L \mu)$$
$$C_9^{\text{NP}} = -C_{10}^{\text{NP}}$$

Alternatives with direct Z' couplings

Altmannshofer et al, 2014, Crivellin et al, 2014, 2015 [$L_{\mu} - L_{\tau}$], Celis et al, 2015 [BGL], ...

Charged Higgs and $R(D^{(*)})$

Natural candidate for the $b \to c$ anomalies: a charged Higgs But the "standard" 2HDMs do not work [Celis et al, 2012]

Type II 2HDM

[BaBar collaboration, 2012]

Aligned 2HDM

[Celis et al, 2012]

A general Type III 2HDM can do the job [Crivellin et al, 2012]

Although currently disfavored!

Killing two birds with one stone

What if the two anomalies are hinting at the same New Physics?

EFTs: [Bhattacharya et al, 2014, Alonso et al, Calibbi et al, Greljo et al, 2015] **Chuck Norris fact of the day**

Chuck Norris can kill two stones with one bird

Leptoquarks

Lectures by Nejc Košnik

See also talk by Marta Moscati at **FPCP 2018**

<u>Simultaneous</u> explanation of both puzzles: leptoquarks?

$$\mathcal{L} \sim \lambda_{d\ell} \, \bar{d} \, \ell \, \phi + \lambda_{u\nu} \, \bar{u} \, \nu \, \phi$$

Very incomplete and outdated list!

$$V_{\mu} = (3,1,-2/3)$$

$$\Phi = (3,1,-1/3)$$

Alonso, Grinstein, Martin-Camalich Bauer, Neubert [1505.05164] [1511.01900, 1512.06828]

Barbieri, Isidori, Pattori, Senia [1512.01560]

Das, Hati, Kumar, Mahajan [1605.06313]

One leptoquark to rule them all [1511.01900]

$$V_{_{11}} = (3,3,2/3)$$

Fajfer, Košnik [1511.06024]

Same as in RPV SUSY

Deshpande, He [1608.04817]

Possible connection to neutrino masses:

Deppisch, Kulkarni, Päs, Schumacher [1603.07672] Hati, Kumar, Orloff, Teixeira [1806.10146]

Strongly-coupled NP

Buttazzo, Greljo, Isidori, Marzocca [1604.03940]

I prefer something more... *elementary*

Lowest-lying vector meson resonances

$$ho^{\pm},
ho^0,\omega,\dots$$

 R_{K,K^*} and $R(D^{(*)})$

Warning

Of course, all these candidates have to respect a long list of experimental constraints...

Other flavor observables: $B \to K^{(*)} \overline{\nu} \nu$, Bs-mixing, $b \to s \gamma$, ...

Direct LHC searches: tension with $R(D^{(*)})$

Lepton universality tests: $Z \to \ell\ell$, ...

Precision EW data

...

... and it may well be that they do not work after all!

b
ightarrow s anomalies and Dark Matter

Evidences for Dark Matter

Evidences for **Dark Matter** come from many different sources:

- Galactic rotation curves
- Clusters dynamics
- Gravitational lensing
- Cosmic microwave background
- Large scale structure simulations
- Bullet cluster
- ...

So we are pretty sure it does exist!

Evidences for Dark Matter

Evidences for Dark Matter

Composition of the <u>universe</u>:

Remember: DE is not the same as DM

DM for particle physicists

Hypothesis: **DM** is made of particles

Requirements for the **DM particle**:

- **Electrically neutral:** Since DM is dark, it should not interact with photons, at least at tree-level. Otherwise they would scatter light becoming visible.
- **Colorless:** If DM particles were strongly interacting, like quarks, they would form <u>bound states</u>. This is strongly constrained by different cosmological searches.
- Stable or long-lived: We need the DM particles to be stable or long-lived (with a life-time of the order of the age of the universe) or otherwise they would have disappared with the evolution of the universe.

Neutrinos do not work (they destroy structures)

Killing two birds with one stone (II)

What if the explanation to these anomalies also solves other physics problems?

You better learn it this time!

Chuck Norris fact of the day

Chuck Norris can kill two stones with one bird

Linking b o s and DM

[AV, 2018]

The mediator responsible for the NP contributions to $b \rightarrow s$ transitions also mediates the <u>DM production</u> in the early Universe

Example:

Aristizabal-Sierra, Staub, AV [1503.06077]

The required NP contributions to $b \rightarrow s$ transitions are induced with loops containing the <u>DM particle</u>

Example:

Kawamura, Okawa, Omura [1706.04344]

A model with a Z' portal

[Aristizabal Sierra, Staub, AV, 2015]

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$$

Vector-like = "joker" for model builders

Vector-like fermions

Link to SM fermions

$$Q = \left(\mathbf{3}, \mathbf{2}, \frac{1}{6}, 2\right)$$

$$L = \left(\mathbf{1}, \mathbf{2}, -\frac{1}{2}, 2\right)$$

Scalars

$$\phi = (\mathbf{1}, \mathbf{1}, 0, 2)$$

$$U(1)_X$$
 breaking

$$\chi = (\mathbf{1}, \mathbf{1}, 0, -1)$$

Dark matter candidate

A model with a Z' portal

[Aristizabal Sierra, Staub, AV, 2015]

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$$

Vector-like = "joker" for model builders

$$\mathcal{L}_m = m_Q \overline{Q}Q + m_L \overline{L}L$$

Vector-like (Dirac) masses

$$\mathcal{L}_Y = \lambda_Q \overline{Q_R} \phi q_L + \lambda_L \overline{L_R} \phi \ell_L + \text{h.c.}$$

VL – SM mixing

Solving the $b \to s$ anomalies

[Aristizabal Sierra, Staub, AV, 2015]

$$\mathcal{O} = (\bar{s}\gamma_{\alpha}P_L b) \ (\bar{\mu}\gamma^{\alpha}P_L \mu)$$
$$C_9^{\text{NP}} = -C_{10}^{\text{NP}}$$

Alternatives with direct Z' couplings

Altmannshofer et al, 2014, Crivellin et al, 2014, 2015 $[L_{ii} - L_{\tau}]$, Celis et al, 2015 [BGL], ...

Dark Matter

DM stability

$$U(1)_X \rightarrow \mathbb{Z}_2$$

$$\chi = (\mathbf{1}, \mathbf{1}, 0, -1)$$

Odd under \mathbb{Z}_2 Automatically stable

[Krauss, Wilczek, 1989] [Petersen et al, 2009] [Aristizabal Sierra, Dhen, Fong, AV, 2014]

The dynamics behind the $b \rightarrow s$ anomalies stabilizes the DM and provides a production mechanism

DM production

Z' portal

Interplay between Flavor and DM

However:
Higgs portal
also possible

Assumption:

 $\lambda_{H\chi} \ll 1$

DM and $b \rightarrow s$ anomalies

[DM RD Computed with micrOMEGAs]

Parameters:

$$\lambda_Q^b = \lambda_Q^s = 0.025$$

$$\lambda_L^\mu = 0.5$$

$$m_Q = m_L = 1 \text{ TeV}$$

$$m_\chi^2 = 1 \text{ TeV}^2$$

- Compatible with flavor constraints (small quark mixings)
- Resonance required to get the correct DM relic density
- Large loop effects for low g_X

Loops and b o s anomalies

[Gripaios et al, 2015] [Arnan et al, 2016]

Figures from Arnan et al [1608.07832]

Model classification

All possible quantum numbers

Different contributions to B_s-mixing

Some multiplets include colorless neutral states (DM candidates)

An example loop model

[Kawamura, Okawa, Omura, 2017]

$$\mathcal{L}_Y = \lambda_Q \overline{Q_R} \, X \, q_L + \lambda_L \overline{L_R} \, X \, \ell_L + \mathrm{h.c.}$$
 $\langle X \rangle = 0 \quad \Rightarrow \quad \text{No VL-SM mixing}_{\mathrm{But new Yukawa interactions}}$

 $\frac{\text{Unbroken}}{\text{U(1)}_{\chi} \text{ symmetry}}$

<u>Loop explanation</u> to the $b \rightarrow s$ anomalies

A gauge explanation of the B-anomalies

Towards a gauge explanation of the anomalies

Flavor violating couplings to quarks

Non-universal couplings to leptons

Ingredients:

- Add an extra SU(2) factor to the SM gauge group
- Null or negligible couplings to electrons, as suggested by data
- Couplings to left-handed fermions, as suggested by b → s and R(D^(*)) apparent universal scaling
- An "effective dynamical" model in this direction [Greljo et al, 2015]

$$SU(2)_1 \otimes SU(2)_2 \otimes U(1)_Y$$
 $\langle \Phi \rangle \sim u \gg v$
 $M_{Z'}, M_{W'} \sim \mathcal{O}(u)$
 $SU(2)_L \otimes U(1)_Y$
 $\langle \phi \rangle, \langle \phi' \rangle \sim v$
 $M_Z, M_W \sim \mathcal{O}(v)$
 $U(1)_{\mathrm{em}}$

Particle content

- > Two scalar doublets: $\begin{aligned} \phi &= (1,2)_{1/2} \\ \phi' &= (2,1)_{1/2} \end{aligned}$
- \blacktriangleright A bidoublet: $\Phi = (2,2)_0$
- SM fermions (f): charged universally under SU(2)₂
- VL fermions (F): charged universally under SU(2)₁

SM-VL mixing

$$\mathcal{L}_{\text{mix}} = \lambda^{\dagger} \bar{F}_R \Phi f_L$$

The issue of gauge mixing

For unsuppressed ζ , gauge mixing effects are potentially of the <u>same size</u> as Z', W' tree-level exchange (for certain observables)

Z', W' tree-level:
$$\sim \frac{1}{M_{W'}^2}$$
 Z, W tree-level + GM: $\sim \frac{1}{M_W^2} \frac{v^2}{u^2} \sim \frac{1}{M_{W'}^2}$

- → Potential to spoil the desired <u>couplings</u> (Anomalous couplings to electrons, corrections to $C_9^{NP} = -C_{10}^{NP}$, ...)
- → Constrained by LEP at the per-mil level (Z- and W-pole observables)

Solution:

A second Higgs doublet

$$\phi' = (2,1)_{1/2}$$

ζ free parameter

Fermion representations

$$q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L = (\mathbf{3}, \mathbf{1}, \mathbf{2})_{\frac{1}{6}}$$

$$Q_{L,R} = \begin{pmatrix} U \\ D \end{pmatrix}_{L,R} = (\mathbf{3}, \mathbf{2}, \mathbf{1})_{\frac{1}{6}}$$

$$\ell_L = \begin{pmatrix} \nu \\ e \end{pmatrix}_L = (\mathbf{1}, \mathbf{1}, \mathbf{2})_{-\frac{1}{2}}$$

$$L_{L,R} = {N \choose E}_{L,R} = (\mathbf{1}, \mathbf{2}, \mathbf{1})_{-\frac{1}{2}}$$

Scalar representations

$$\phi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} \qquad \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi^0 & \Phi^+ \\ -\Phi^- & \bar{\Phi}^0 \end{pmatrix} \qquad \phi' = \begin{pmatrix} \varphi'^+ \\ \varphi'^0 \end{pmatrix}$$

self-dual bidoublet :
$$\Phi=\widetilde{\Phi}=\sigma_2\Phi^*\sigma_2$$

$$\bar{\Phi}^0=(\Phi^0)^*\quad \Phi^-=(\Phi^+)^*$$

Standard Yukawa terms

$$-\mathcal{L}_{\phi} = \overline{q_L} y^d \phi d_R + \overline{q_L} y^u \tilde{\phi} u_R + \overline{\ell_L} y^e \phi e_R + \text{h.c.}$$

VL mass terms

$$-\mathcal{L}_M = \overline{Q_L} \, \underline{M_Q} \, Q_R + \overline{L_L} \, \underline{M_L} \, L_R + \text{h.c.}$$

 M_Q, M_L : $n_{_{
m VL}} \, {
m x} \, n_{_{
m VL}}$ matrices

 λ_q, λ_ℓ : 3 x n_{vi} matrices

VL-SM Yukawa terms

$$-\mathcal{L}_{\Phi} = \overline{Q_R} \, \lambda_q^{\dagger} \, \Phi \, q_L + \overline{L_R} \, \lambda_{\ell}^{\dagger} \, \Phi \, \ell_L + \text{h.c.}$$
$$-\mathcal{L}_{\phi'} = \overline{Q_L} \, \widetilde{y}^d \, \phi' \, d_R + \overline{Q_L} \, \widetilde{y}^u \, \widetilde{\phi}' \, u_R + \overline{L_L} \, \widetilde{y}^e \, \phi' \, e_R + \text{h.c.}$$

Scalar potential and symmetry breaking

$$\mathcal{V} = m_{\phi}^{2} |\phi|^{2} + \frac{\lambda_{1}}{2} |\phi|^{4} + m_{\phi'}^{2} |\phi'|^{2} + \frac{\lambda_{2}}{2} |\phi'|^{4} + m_{\Phi}^{2} \operatorname{Tr}(\Phi^{\dagger}\Phi) + \frac{\lambda_{3}}{2} \left[\operatorname{Tr}(\Phi^{\dagger}\Phi) \right]^{2} + \lambda_{4} (\phi^{\dagger}\phi)(\phi'^{\dagger}\phi') + \lambda_{5} (\phi^{\dagger}\phi) \operatorname{Tr}(\Phi^{\dagger}\Phi) + \lambda_{6} (\phi'^{\dagger}\phi') \operatorname{Tr}(\Phi^{\dagger}\Phi) + (\mu \phi'^{\dagger} \Phi \phi + \text{h.c.})$$

$$\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\phi} \end{pmatrix} \qquad \langle \phi' \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\phi'} \end{pmatrix} \qquad \langle \Phi \rangle = \frac{1}{2} \begin{pmatrix} u & 0 \\ 0 & u \end{pmatrix}$$

$$\mathrm{SU}(2)_1 \times \mathrm{SU}(2)_2 \times \mathrm{U}(1)_Y \xrightarrow{u} \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \xrightarrow{v} \mathrm{U}(1)_{\mathrm{em}}$$

$$v_{\phi} = v \sin \beta$$

$$u \sim \text{TeV} \gg v \simeq 246 \, \text{GeV}$$

Doublets $v_{\phi'} = v \, \cos \beta$ VEVs $v^2 = v_{\phi}^2 + v_{\phi'}^2$

$$Q = (T_3^1 + T_3^2) + Y = T_3^L + Y$$

Particle spectrum I: Scalars

[constrained 2HDM + CP-even singlet scenario]

Particle spectrum II: Fermions

$$\mathcal{F}_{L,R}^{I} \equiv \left(f_{L,R}^{i}, F_{L,R}^{k}\right)$$

$$i = 1, 2, 3$$

$$k = 1, \dots, n_{\text{VL}}$$

$$I = 1, \dots, 3 + n_{\text{VL}}$$

$$\mathcal{M}_{\mathcal{F}} = \begin{pmatrix} \frac{1}{\sqrt{2}} y_f v_{\phi} & \frac{1}{2} \lambda_f u \\ \frac{1}{\sqrt{2}} \widetilde{y}_f v_{\phi'} & M_F \end{pmatrix}$$

SM-VL mixing induced by $\lambda_{_{\!f}}$

Particle spectrum III: Gauge bosons

Neutral gauge bosons

$$\mathcal{V}^0 = \left(W_3^1, W_3^2, B\right)$$

$$\mathcal{M}_{\mathcal{V}^0}^2 = \frac{1}{4} \begin{pmatrix} g_1^2 \left(v_{\phi'}^2 + u^2 \right) & -g_1 g_2 u^2 & -g_1 g' v_{\phi'}^2 \\ -g_1 g_2 u^2 & g_2^2 \left(v_{\phi}^2 + u^2 \right) & -g_2 g' v_{\phi}^2 \\ -g_1 g' v_{\phi'}^2 & -g_2 g' v_{\phi}^2 & g'^2 \left(v_{\phi}^2 + v_{\phi'}^2 \right) \end{pmatrix}$$

controlled by
$$\zeta=s_{\beta}^2-\frac{g_1^2}{g_2^2}c_{\beta}^2$$
 vanishes for $\tan\beta=g_1/g_2$

$$\widehat{\mathcal{V}}^0 = (Z_h, Z_l, A)$$

$$\downarrow \qquad \downarrow$$

$$Z' \qquad Z$$

$$\widehat{\mathcal{V}}^{0} = (Z_{h}, Z_{l}, A) \qquad \mathcal{M}_{\mathcal{V}^{0}}^{2} = \frac{1}{4} \begin{pmatrix} (g_{1}^{2} + g_{2}^{2}) u^{2} + \frac{g^{2}g_{2}^{2}}{g_{1}^{2}} v^{2} \left(s_{\beta}^{2} + \frac{g_{1}^{4}}{g_{2}^{4}} c_{\beta}^{2}\right) & -g n_{2} \frac{g_{2}}{g_{1}} v^{2} \left(s_{\beta}^{2} - \frac{g_{1}^{2}}{g_{2}^{2}} c_{\beta}^{2}\right) & 0 \\ -g n_{2} \frac{g_{2}}{g_{1}} v^{2} \left(s_{\beta}^{2} - \frac{g_{1}^{2}}{g_{2}^{2}} c_{\beta}^{2}\right) & (g^{2} + g'^{2}) v^{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$egin{align} -g \, n_2 rac{g_2}{g_1} \, v^2 \left(s_eta^2 - rac{g_1}{g_2^2} c_eta^2
ight) & 0 \, \ & \left(g^2 + g'^{\, 2}
ight) v^2 & 0 \ 0 & 0 \, \end{pmatrix}$$

Particle spectrum III: Gauge bosons

Charged gauge bosons

$$\mathcal{V}^{+} = \left(W_{12}^{1}, W_{12}^{2}\right)$$
$$W_{12}^{r} = \frac{1}{\sqrt{2}} \left(W_{1}^{r} - iW_{2}^{r}\right)$$

$$\mathcal{M}_{\mathcal{V}^{+}}^{2} = \frac{1}{4} \begin{pmatrix} g_{1}^{2} \left(v_{\phi'}^{2} + u^{2} \right) & -g_{1}g_{2}u^{2} \\ -g_{1}g_{2}u^{2} & g_{2}^{2} \left(v_{\phi}^{2} + u^{2} \right) \end{pmatrix}$$

controlled by
$$\zeta=s_{\beta}^2-\frac{g_1^2}{g_2^2}c_{\beta}^2$$
 vanishes for $\tan\beta=g_1/g_2$

$$\widehat{\mathcal{V}}^+ = (W_h, W_l)$$

$$\downarrow \qquad \downarrow$$

$$W' W$$

$$\widehat{\mathcal{V}}^{+} = (W_h, W_l) \qquad \mathcal{M}_{\mathcal{V}^{+}}^2 = \frac{1}{4} \begin{pmatrix} \left(g_1^2 + g_2^2\right) u^2 + \frac{g^2 g_2^2}{g_1^2} v^2 \left(s_\beta^2 + \frac{g_1^4}{g_2^4} c_\beta^2\right) & -g^2 \frac{g_2}{g_1} v^2 \left(s_\beta^2 - \frac{g_1^2}{g_2^2} c_\beta^2\right) \\ -g^2 \frac{g_2}{g_1} v^2 \left(s_\beta^2 - \frac{g_1^2}{g_2^2} c_\beta^2\right) & g^2 v^2 \end{pmatrix}$$

$$-g^{2}\frac{g_{2}}{g_{1}}v^{2}\left(s_{\beta}^{2}-\frac{g_{1}^{2}}{g_{2}^{2}}c_{\beta}^{2}\right)$$
$$g^{2}v^{2}$$

Z' and W' couplings to light fermions

$$\mathcal{L}_{\rm NC} \supset \frac{\hat{g}}{2} Z_h^{\mu} \left[\overline{d_L} \, \gamma_{\mu} \, \Delta^{\mathbf{q}} d_L + \overline{e_L} \, \gamma_{\mu} \, \Delta^{\mathbf{\ell}} e_L \right]$$

SM-VL mixing

$$\mathcal{L}_{\text{CC}} \supset -\frac{\hat{g}}{\sqrt{2}} W_h^{\mu} \left[\overline{u_L} \gamma_{\mu} V_{\text{CKM}} \Delta^{\mathbf{q}} d_L + \overline{\nu_L} \gamma_{\mu} \Delta^{\mathbf{\ell}} e_L \right] + \text{h.c.}$$

$$\Delta^{q,\ell} = \mathbb{I} - \frac{g_1^2 + g_2^2}{4g_2^2} \lambda_{q,\ell} \widetilde{M}^{-2} \lambda_{q,\ell}^{\dagger}$$
 universal non-universal due to

 $u\widetilde{M}$: physical VL mass

$$n_{\rm VL} = 2$$

$$\lambda_{q,\ell} = \frac{2g_2}{\sqrt{g_1^2 + g_2^2}} \begin{pmatrix} \widetilde{M}_{Q_1, L_1} & 0 \\ 0 & \widetilde{M}_{Q_2, L_2} \, \Delta_{s, \mu} \\ 0 & \widetilde{M}_{Q_2, L_2} \, \Delta_{b, \tau} \end{pmatrix}$$

$$\Delta^{q,\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 - (\Delta_{s,\mu})^2 & \Delta_{s,\mu}\Delta_{b,\tau} \\ 0 & \Delta_{s,\mu}\Delta_{b,\tau} & 1 - (\Delta_{b,\tau})^2 \end{pmatrix}$$

Our global fit

Many more details in Boucenna, Celis, Fuentes-Martin, AV, Virto [arXiv:1608.01349]

- Bounds from Z and W pole observables [Efrati et al, 2015]
- Tests of lepton universality violation in tree-level charged current processes: $\ell \to \ell' \nu \bar{\nu}, \pi/K \to \ell \nu, \tau \to \pi/K \nu, K^+ \to \pi \ell \nu,$ $D \to K \ell \nu, D_s \to \ell \nu, B \to D^{(*)} \ell \nu$ and $B \to X_c \ell \nu$
- $|\Delta F|=1,2$ transitions in the $b\to s$ sector receiving NP contributions at tree-level
- Bounds from the lepton flavor violating decays $\, au o 3\,\mu\,$ and $Z o au\mu$
- CKM inputs from a fit by the CKMfitter group with only tree-level processes

Our global fit

Many more details in

Boucenna, Celis, Fuentes-Martin, AV, Virto [arXiv:1608.01349]

Global χ^2 function

Best-fit point:

$$\{M_{Z'} \; [\mathrm{GeV}], g_2, \Delta_s, \Delta_b, |\Delta_\mu|, |\Delta_\tau|, \zeta\} = \{1436, 1.04, -1.14, 0.016, 0.39, 0.075, 0.14\}$$

$$\chi^2_{\min} = 54.8 \qquad \text{to be compared with} \qquad \chi^2_{\mathrm{SM}} = 93.7$$

In the parameter space region where R_{κ} and $R(D^{(*)})$ are accommodated within 2σ , the Z' and W' bosons couple predominantly to the third fermion generation

Gauging the anomalies away

Global fit

- EW precision data
- Flavor data

The model gives a good fit to data

Gauge-mixing must be suppressed. Otherwise R(D*) cannot be explained

More on gauge mixing

Explaining the R(D*) <u>best-fit</u> requires a tiny GM parameter (otherwise too large NP contribution in other charged current processes)

 R_{κ} not very sensitive to GM effects (the required Z coupling is <u>loop suppressed in the SM</u>)

Predictions

(1) Additional b → c observables

NP contributions have the same Dirac structure as the SM ones

$$\Longrightarrow \frac{R(D)}{R(D^*)} = \left\lfloor \frac{R(D)}{R(D^*)} \right\rfloor_{\text{SM}}$$

- \Longrightarrow Enhancement in the $R(X_i)$ inclusive ratio
- Global rescaling in the B \rightarrow D^(*) τ ν decay rate. Differential distributions are SM-like.

(2) Other R_{M} observables

 R_{κ} , R_{κ^*} and R_{σ} are strongly correlated

$$\implies R_{K^*} \sim R_K < 1$$
 (for example)

Predictions

(3) Lepton flavor violation

Z' tree-level exchange can lead to observables LFV effects

 $\Longrightarrow \operatorname{BR}(\tau \to 3\,\mu)$ can be close to the experimental bound

(4) LHC direct searches

The Z' boson will be produced at the LHC via Drell-Yan processes due to its couplings to the 2nd and 3rd generation quarks

- \Longrightarrow The usual limits (1st generation couplings) do not apply
- Nevertheless: the LHC is sensitive
- ATLAS search for a narrow τ + τ resonance excludes the light Z' region (M_{z'} < 1 TeV). Some tension for M_{z'} ~ 1 TeV unless the Z' is broad [Greljo et al, 1609.07138, 1704.09015]

[tension in almost all models for $b \rightarrow c$ anomalies]

Summary of the lecture

Summary of the lecture

The explanation to the B-anomalies may well open a gate to a whole new sector

Connection to Dark Matter

Many models...

Individual explanations: Z', leptoquarks, charged Higgs, loops, ...

Combined explanations: W'+Z', leptoquarks, strongly coupled

We definitely need more data

Summary of the lecture

The explanation to the B-anomalies may well open a gate to a whole new sector

Connection to Dark Matter

Many models...

Individual explanations: Z', leptoquarks, charged Higgs, loops, ...

Combined explanations: W'+Z', leptoquarks, strongly coupled

We definitely need more data

I hope you enjoyed and will contribute to this field of research!

Backup

LFV in B meson decays

What about LFV?

[Glashow et al, 2014]

Lepton universality violation generically implies lepton flavor violation

Gauge basis

Mass basis

$$\mathcal{O} = \widetilde{C}^{Q} \left(\overline{q}' \gamma_{\alpha} P_{L} q' \right) \widetilde{C}^{L} \left(\overline{\ell}' \gamma^{\alpha} P_{L} \ell' \right) \longrightarrow \mathcal{O} = C^{Q} \left(\overline{q} \gamma_{\alpha} P_{L} q \right) C^{L} \left(\overline{\ell} \gamma^{\alpha} P_{L} \ell \right)$$

$$C^L = U_\ell^\dagger \, \widetilde{C}^L \, U_\ell$$

<u>However</u>: we must have a flavor theory in order to make predictions

Are the LHCb anomalies related to neutrino oscillations?

Working hypothesis: What if $U_\ell = K^\dagger$?

[Boucenna, Valle, AV, 2015]

Neutrino oscillations

thcb sensitivity $\sim 10^{-10}$

Lines: BF

Bands: 1σ

LHCb anomalies and flavor symmetries

[de Medeiros Varzielas, Hiller, 2015]

Flavor symmetries!

$$SU(3)_F \times U(1)_F \qquad \langle \phi_{23} \rangle = (0, b, -b) \qquad \{\Delta\} = -2$$

$$A_4 \times Z_3 \qquad \langle \phi_l \rangle = (u, 0, 0) \qquad 1, \{\Delta\} = 2$$

$$A_4 \times Z_3 \qquad \langle \phi_l \rangle = (u, 0, 0) \qquad 1^n, \{\Delta\} = 2$$

$$1^x, \{\Delta\} = 0$$

$$\lambda = \begin{pmatrix} 0 & \lambda_{d\mu} & 0 \\ 0 & \lambda_{s\mu} & 0 \\ 0 & \lambda_{b\mu} & 0 \end{pmatrix}$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

[Table from de Medeiros Varzielas, Hiller, arXiv:1503.01084]

The rates for the different channels are predicted by the symmetry!

Model classification

Breaking pattern

L-BP: $SU(2)_L \otimes SU(2)_H \otimes U(1)_H$ $\downarrow SU(2)_L \otimes U(1)_Y$

Y-BP: $SU(2)_1\otimes SU(2)_2\otimes U(1)_Y$ $U(2)_L\otimes U(1)_Y$

Source of non-universality

g-NU: Non-universal gauge couplings

y-NU: Through non-universal mixings with other fermions

	L-BP	Y-BP	
g-NU	X No left-handed currents	Perturbativity	
y-NU	× No GIM	√	

The model (II)

	generations	$SU(3)_C$	$SU(2)_1$	$SU(2)_2$	$\mathrm{U}(1)_Y$
ϕ	1	1	1	2	1/2
Φ	1	1	2	$ar{2}$	0
ϕ'	1	1	2	1	1/2
q_L	3	3	1	2	1/6
u_R	3	3	1	1	2/3
d_R	3	3	1	1	-1/3
ℓ_L	3	1	1	${f 2}$	-1/2
$ e_R $	3	1	1	1	-1
$Q_{L,R}$	$n_{\scriptscriptstyle m VL}$	3	2	1	1/6
$L_{L,R}$	$n_{\scriptscriptstyle m VL}$	1	2	1	-1/2

The model (II)

Z' and W' couplings to fermions

$$\mathcal{L}_{\mathrm{NC}} \supset \frac{\hat{g}}{2} Z_h^{\mu} \left[\overline{\mathcal{D}_L} \, \gamma_{\mu} \, O_L^Q \, \mathcal{D}_L + \overline{\mathcal{E}_L} \, \gamma_{\mu} \, O_L^L \, \mathcal{E}_L \right]$$

$$\mathcal{L}_{\text{CC}} \supset -\frac{\hat{g}}{\sqrt{2}} W_h^{\mu} \left[\overline{\mathcal{U}_L} \, \gamma_{\mu} \, V O_L^Q \, \mathcal{D}_L + \overline{\mathcal{N}_L} \, \gamma_{\mu} \, O_L^L \, \mathcal{E}_L \right] + \text{h.c.}$$

$$\hat{g} \equiv g \, \frac{g_2}{g_1}$$

$$V = \begin{pmatrix} V_{\text{CKM}} & 0 \\ 0 & 1 \end{pmatrix}$$

$$\hat{g} \equiv g \, \frac{g_2}{g_1}$$
 $V = \begin{pmatrix} V_{\text{CKM}} & 0 \\ 0 & 1 \end{pmatrix}$ $O_L^{Q,L} \equiv \begin{pmatrix} \Delta^{q,\ell} & \Sigma \\ \Sigma^{\dagger} & \Omega^{Q,L} \end{pmatrix}$

$$\Delta^{q,\ell} = \mathbb{I} - \frac{g_1^2 + g_2^2}{4g_2^2} \lambda_{q,\ell} \widetilde{M}^{-2} \lambda_{q,\ell}^{\dagger} \qquad \text{th}$$

universal

non-universal due to SM-VL mixing

Note: uM is the physical VL mass

The model (II)

Z' and W' couplings to fermions

$$\Delta^{q,\ell} = \mathbb{I} - \frac{g_1^2 + g_2^2}{4g_2^2} \lambda_{q,\ell} \widetilde{M}^{-2} \lambda_{q,\ell}^{\dagger}$$

$$n_{\rm \scriptscriptstyle VL}=1$$

$$n_{
m VL} = 2$$

$$\lambda_{q,\ell} = rac{2g_2}{\sqrt{g_1^2 + g_2^2}} \widetilde{M}_{Q,L} egin{pmatrix} \Delta_{d,e} \\ \Delta_{s,\mu} \\ \Delta_{b, au} \end{pmatrix}$$

$$\lambda_{q,\ell} = \frac{2g_2}{\sqrt{g_1^2 + g_2^2}} \widetilde{M}_{Q,L} \begin{pmatrix} \Delta_{d,e} \\ \Delta_{s,\mu} \\ \Delta_{b,\tau} \end{pmatrix} \qquad \lambda_{q,\ell} = \frac{2g_2}{\sqrt{g_1^2 + g_2^2}} \begin{pmatrix} \widetilde{M}_{Q_1,L_1} & 0 \\ 0 & \widetilde{M}_{Q_2,L_2} \Delta_{s,\mu} \\ 0 & \widetilde{M}_{Q_2,L_2} \Delta_{b,\tau} \end{pmatrix}$$

$$\Delta^{q,\ell} = \begin{pmatrix} 1 - (\Delta_{d,e})^2 & \Delta_{d,e} \Delta_{s,\mu} & \Delta_{d,e} \Delta_{b,\tau} \\ \Delta_{d,e} \Delta_{s,\mu} & 1 - (\Delta_{s,\mu})^2 & \Delta_{s,\mu} \Delta_{b,\tau} \\ \Delta_{d,e} \Delta_{b,\tau} & \Delta_{s,\mu} \Delta_{b,\tau} & 1 - (\Delta_{b,\tau})^2 \end{pmatrix} \qquad \Delta^{q,\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 - (\Delta_{s,\mu})^2 & \Delta_{s,\mu} \Delta_{b,\tau} \\ 0 & \Delta_{s,\mu} \Delta_{b,\tau} & 1 - (\Delta_{b,\tau})^2 \end{pmatrix}$$

$$\Delta^{q,\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 - (\Delta_{s,\mu})^2 & \Delta_{s,\mu} \Delta_{b,\tau} \\ 0 & \Delta_{s,\mu} \Delta_{b,\tau} & 1 - (\Delta_{b,\tau})^2 \end{pmatrix}$$

Does not work!

It works!

Other observables

Explaining the $R(D^*)$ best-fit would induce a slight tension with the $R(X_c)$ experimental measurement