
4 Lecture 3: Beyond the Standard Model

4.1 Why to go beyond: experimental vs theoretical reasons
The SM is a very successful description of particle physics phenomena at energies up to the TeV scale, the
energy region that our experiments have been able to explore so far. Therefore, one may naively think that
we have no reason to extend the model. However, as we will learn in this lecture, this theory for the strong
and electroweak interactions has several experimental and theoretical problems, thus making it necessary to go
beyond the SM (BSM).

One can generally classify the reasons to go beyond the SM into two major categories:

4.2 Experimental reasons
Neutrino masses

Based on the fact that neutrinos were always observed to be left-handed, as opposed to the other fermions that
could be found with both chiralities, and because no experimental result pointed to a non-zero neutrino mass,
the fathers of the Standard Model decided not to add right-handed neutrinos to the particle spectrum. As we
saw in the previous lecture, without right-handed neutrinos it is not possible to write down a Yukawa term that
can lead to Dirac masses for neutrinos. Therefore, neutrinos are massless in the Standard Model and there is
no leptonic mixing matrix.

This practical choice has recently been shown to be wrong: the existence of non-zero neutrino masses and
mixing is nowadays an established fact thanks to neutrino oscillation experiments. Let us briefly discuss the
solar and atmospheric neutrino problems, two puzzles that have finally required the introduction of neutrino
masses for their resolution:

• Solar neutrino problem: The Sun produces neutrinos in the nuclear reactions that continuously occur in
its interior. These neutrinos escape in all directions, some of them reaching the Earth and our detectors.
We can now compare the predicted neutrino fluxes with the observation and check whether there is
agreement between our theoretical expectation and the experimental measurements. Several experimental
collaborations precisely did this, and surprisingly all of them detected less neutrinos than predicted.

• Atmospheric neutrino problem: Neutrinos are also produced in the atmosphere. When a cosmic ray
hits an air molecule in the higher parts of the atmosphere, a particle shower is produced, including some
neutrinos that travel towards the Earth, where detectors are placed underground waiting for them. As
for solar neutrinos, again the predictions did not match the observations.

These puzzles are nowadays understood in terms of neutrino flavor oscillations, a phenomenom that only
works if neutrinos are massive and there is a non-diagonal leptonic mixing matrix.

In fact, as soon as neutrinos are massive, the trick that we used in the previous lecture to eliminate the
leptonic mixing matrix is not valid anymore. The Uν matrix, the unitary transformation linking the origi-
nal neutrino gauge eigenstates (also known as flavor eigenstates in this context) νL with the neutrino mass
eigenstates ν̂L,

νL = Uν ν̂L , (176)

becomes physical. Therefore, in the presence of massive neutrinos (and regardless of the neutrino mass mecha-
nism), the lepton charged current interaction Lagrangian becomes

L`cc =
g√
2
ν̂LγµVPMNSêLW

+µ + h.c. , (177)

where we have defined
VPMNS = U†νUe . (178)

VPMNS is a 3× 3 unitary matrix, obtained from the product of the left neutrino and charged lepton rotations.
This analog of the CKM matrix is the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [29].

We are now in position to discuss neutrino oscillations. This phenomenom can be easily described in just a
few words: if neutrinos are massive and the flavor and mass bases are different, the neutrino flavor changes while
they propagate. As a consequence, a neutrino which is originally produced as electron neutrino can be detected
as muon or tau neutrino. This oscillating effect explains the deficits found in solar and atmospheric neutrino
experiments. This quantum mechanical phenomenom, first discussed by Pontecorvo in 1967 [30], necessarily
requires that neutrinos have non-zero masses and mixings, as one can observe by inspecting the probability for
a neutrino flavor eigenstate να with energy E to oscillate into a neutrino flavor eigenstate νβ ,

P (να → νβ) =

3∑
j,k=1
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2E

)
. (179)
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Figure 8: Masses of the known fundamental particles. For the neutrino, the conservative upper bound mν = 1
eV is used and only one generation is represented. Leptons are drawn in blue, quarks in red and massive gauge
bosons in green. The massless gauge bosons, photon and gluon, are not included in the plot. Similarly, we have
not included the recently discovered Higgs boson, whose mass is about ∼ 125 GeV.

Here ∆m2
kj ≡ m2

k − m2
j . Notice that the oscillation probability formula in Eq. (179) depends on squared

mass differences, and not on the masses themselves. For this reason, oscillation experiments cannot tell us the
absolute values of neutrino masses, for which we only have upper bounds (of the order of the eV).

A simple extension of the SM that can account for neutrino masses is the addition of 3 generations of right-
handed neutrinos νR, with quantum numbers (1, 1)0 under the SM gauge group 5. This would allow us to write
new Yukawa couplings

LνY = Yν `LΦ̃νR + h.c. , (180)

with Yν a 3× 3 matrix. Then, after the SSB of the electroweak symmetry one obtains Dirac neutrino masses,
exactly in the same way as for the other fermions,

Lνm =Mν νLνR + h.c. . (181)

However, this is not a popular solution in the community. The reason is that neutrinos are required by exper-
imental data to be much lighter than the other fermions. Fig. 8 shows the masses of the known fundamental
particles. For the neutrino, the conservative upper bound mν = 1 eV is used and only one generation is repre-
sented. Note the huge difference between the upper bound for the neutrino mass and the masses of the other
particles. This can be hardly understood if they share the Higgs mechanism as a common source. In fact, if
we insisted on this solution, we would find that in order to obtain neutrino masses of the order of ∼ 1 eV, one
would require tiny Yukawas Yν ∼ 10−11.

For this reason, most theorists think that a good neutrino mass model not only should generate neutrino
masses, but it should also be able to account for their smallness. The most popular model that can do this
is the famous Type-I Seesaw [31–34]. In fact, we almost found this model when we introduced right-handed
neutrinos into the SM. However, before we complete the task, let us comment on the two type of fermions that
can exist: Dirac and Majorana fermions.

So far, all the massive fermions that have appeared in our discussion are Dirac fermions, with mass terms
of the form

mDfLfR + h.c. = mDff , (182)

see for example Eq. (181). It is easy to show that a fermion with a mass term of this type is not its own
antiparticle: f 6= f c. However, there is another possibility, as Majorana showed in 1937 [35]. The Lorentz
symmetry also allows to write down mass terms of the form

1

2
mMf cXfX + h.c. , withX = L orR . (183)

In this case, and contrary to the Dirac case, one finds that a Majorana fermion is its own antiparticle: f = f c.
This implies that a Majorana mass term would break all U(1) charges carried by the f fermion. In fact, it
is clear that the term f cXfX would not be invariant under any U(1) transformation under which f is charged.
Therefore, only fields neutral under all the conserved U(1) charges of the model can be Majorana fermions 6.

5In fact, current neutrino data can be explained just with 2 generations of right-handed neutrinos, but is common to introduce
3 for similarity with the other fermions.

6For a detailed characterization of Majorana neutrinos in gauge theories see [36].
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We go back to the Type-I Seesaw. In addition to the neutrino Yukawa coupling in Eq. (180), the SM gauge
symmetry allows us to write down a Majorana mass term for the right-handed neutrinos. With this additional
piece the part of the lagrangian that involves the right-handed neutrino becomes

LνY = Yν `LΦ̃νR +
1

2
νcRMRνR + h.c. . (184)

Here MR is a 3× 3 symmetric matrix. As noted above, a Majorana mass breaks all U(1) symmetries. Since the
right-handed neutrino hypercharge is zero, the gauge symmetry is preserved. However, if we consider a lepton
number symmetry, U(1)L, under which all leptons are charged, the Majorana mass MR would necessarily break
it by two units. Actually, this piece not only breaks lepton number, but also changes the picture completely.
After the electroweak SSB the Lagrangian (184) leads to

Lνm = mDνLνR +
1

2
νcRMRνR + h.c. =

1

2
χcMχχ+ h.c. , (185)

where χ =
(
νcL νR

)T
and

Mχ =

 0 mD

mT
D MR

 . (186)

The Majorana mass MR of the right-handed neutrinos is a free parameter of the model. Since its origin is
not tied to electroweak symmetry breaking, MR can take any value. If we assume MR � mD, the matrix in
equation (186) can be block-diagonalized in good approximation to give

M̂χ '

 mlight 0

0 Mheavy

 (187)

with

mlight =−mT
D ·M−1

R ·mD , (188)
Mheavy =MR . (189)

The mass of the light neutrinos is given by mν ≡ mlight ∼ m2
D/MR. This, usually called the seesaw formula,

provides a natural explanation for the observed lightness of neutrinos. Let us consider the value mν ∼ 1 eV. If,
for example, we take MR = 1013 GeV, the Dirac mass turns out to be mD = v√

2
Yν ∼ 100 GeV, which implies

Yukawa couplings of order 1, Yν ∼ 1, what can be compared to the results in our discussion on Dirac neutrinos,
where we showed that the same mass for the light neutrinos implies Yν ∼ 10−11 in that case. Furthermore, under
the same assumption, MR � mD, the mass eigenstates can be approximated as χlight ' νL and χheavy ' νR.
This would explain why neutrinos have always been observed to be left-handed in all performed experiments:
the light states are mostly left-handed.

To conclude our discussion on neutrino mass models, let us just mention that there are other variations
of the seesaw mechanism and other neutrino mass models that explain the smallness of neutrino masses by
completely different means.

Dark matter

The SM lacks a valid dark matter (DM) candidate. This constitutes one of the most relevant experimental
indications guiding our current theoretical efforts. Since there is a specific course on DM in this school, let us
just briefly review the subject for the sake of completeness.

The evidence for DM comes from many different sources. Most of it comes from the motion of galaxies and
clusters. For instance, galactic rotation curves, which show the velocity of rotation of stars as a function of their
distance from the galactic center, cannot be explained if all the mass is in luminous objects. This is illustrated
in Fig. 9. Similar observations are made in galaxy clusters. Other indirect (but robust) evidences are obtained
from gravitational lensing, the cosmic microwave background and structure formation simulations.

Even though the evidence for the existence of DM in the universe is solid, its nature is completely unknown.
Among the many explanations put forward by theorists along the years, the most popular one nowadays is that
DM is made of particles, just like anything else we know about. In this case, the DM particles must have some
specific properties. From the model building point of view, the first three properties one must respect are:

• Electrically neutral: Since DM is dark, it should not interact with photons, at least at tree-level.
Otherwise they would scatter light becoming visible.
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Figure 9: Rotation curve of a typical spiral galaxy: predicted (A) vs observed (B). As the distance to the
galatic center increases one would expect that the velocity of luminous objects decreases (in the same way their
density does). However, one observationally finds a flat dependence with the distance, suggesting the presence
of additional non-luminous matter.

• Colorless: If DM particles were strongly interacting, like quarks, they would form bound states. This is
strongly constrained by different cosmological searches.

• Stable or long-lived: We need the DM particles to be stable or long-lived (with a life-time of the order
of the age of the universe) or otherwise they would have disappared with the evolution of the universe.

In addition, DM models must fulfill other requirements. For instance, the DM particles must be produced in
the early universe in the amount required by the observed DM relic density. There are several known production
mechanisms and they all involve the coupling of the DM particles to the SM states which were present in the
hot plasma that filled the universe at early epochs. This typically introduces stringent constraints on the DM
particle couplings to the SM states.

The only particle in the SM with the properties described above is the neutrino. However, neutrinos cannot
constitute the whole of the DM of the universe but can only be a very small fraction of it. The reason is their
lightness. If neutrinos have masses of the order of the eV they would constitute a hot DM component of the
universe. As it is well known, this type of DM suppresses the formation of structures at small scales, of the
order of 1− 10 Mpc, making it impossible for galaxies to form.

Therefore, if we insist on a particle explanation to the DM problem we must introduce a new particle, hence
going beyond the SM. Following the requirents explained above, this particle is usually chosen to be electrically
neutral, singlet under SU(3)c and absolutely stable. In principle, the possibility of a long-lived DM particle is
perfectly viable and is in fact a relatively common choice in BSM models. However, from the model building
point of view it is simpler to make the DM completely stable with the introduction of a symmetry.

The way a symmetry stabilizes the DM particle is quite analogous to why the proton is stable in the SM. In
the SM, the gauge symmetry prevents one from writing down any renormalizable operator that breaks baryon
number (B). This global symmetry is said to be accidental since it is not imposed when constructing the model,
but just turns out to appear given our choices for the gauge symmetry and particle content. As a result of this,
one can show in a straightforward way that the SM Lagrangian has a global U(1)B symmetry 7, under which
all quark multiplets (qL, uR and dR) transform with a baryonic charge +1/3, this is, as q → q′ = exp (iα/3) q.
With this definition, the proton has baryon number (the baryonic charge) +1 and its stability is due to the fact
that it is the lightest baryon. Since baryon number must be conserved in all decays, and given that the proton
cannot decay to other (heavier) baryons due to energy conservation, it is absolutely stable.

The same mechanism can be applied to stabilize the new DM particle. One can introduce a new conserved
symmetry, which might be continuous or global, local or gauge, and the lightest particle charged under this
symmetry will be absolutely stable. If this particle has the desired properties for a DM particle, it is in principle
a good DM candidate.

One of the simplest DM models is the so-called singlet scalar DM model [37]. In this case one extends the
SM particle content with a real scalar S ∼ (1, 1)0, singlet under the SM gauge group, and introduces a conserved
Z2 symmetry, under which S is odd,

S → S′ = −S , (190)

while all the SM particles are even (singlets under Z2). With these ingredients, the new Lagrangian terms are

LS =
1

2
∂µS∂

µS − 1

2
µ2
SS

2 − 1

4
λSS

4 − 1

2
λPS

2|Φ|2 . (191)

7I am omitting here non-perturbative SM effects that violate U(1)B . These do not affect this discussion and will be mentioned
below.
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Since all Lagrangian terms have even powers of S, S is completely stable. Being also electrically neutral and
singlet under SU(3)c, it fulfills the minimal requirements to be considered a valid DM candidate. In fact, the
singlet scalar DM model has been shown to be able to accommodate the observed DM relic density. For this
purpose, the λP coupling is crucial, as it makes the connection to the SM states (via the Higgs doublet), thus
enabling the production of S particles in the early universe.

The baryon asymmetry of the universe

Finally, a third experimental reason to go beyond the SM is the baryon asymmetry of the universe.
Observations indicate that number of baryons (protons and neutrons) and antibaryons (antiprotons and

antineutrons) in the universe are not equal. For example, all the structures that we see, like stars, galaxies or
clusters, are made of baryons. Since various considerations suggest that the universe has started from a state
with equal number of baryons and antibaryons, the observed baryon asymmetry of the universe (BAU) must
be generated dynamically. This scenario is called baryogenesis.

The BAU is precisely defined as

YB ≡
nB − nB

s

∣∣∣∣
0

= (8.65± 0.08)× 10−11 , (192)

where nB and nB are the number densities of baryons and antibaryons, respectively, s is the entropy density
and the subscript 0 indicates that these quantities are measured at present time. The numerical value given
here has been obtained by combining measurements from the cosmic microwave background and light element
abundances (which allow us to derive a value for YB due to its crucial role in big bang nucleosynthesis), and it
is the number our dynamical mechanism must be able to explain.

The three ingredients required to dynamically generate a BAU were given by Sakharov in 1967 and are
known as Sakharov’s conditions [38]:

1. B violation: baryon number must be violated in order to evolve from a state with YB = 0 to a current
universe with YB 6= 0.

2. C and CP violation: If either C or CP were conserved, processes involving baryons would proceed at
the same rate as those involving antibaryons, thus compensating each other and leading to a vanishing
overall effect.

3. Departure from thermal equilibrium: In thermal equilibrium it is not possible to generate an asym-
metry since direct (A→ B) and inverse (A← B) processes would take place at the same rate.

These ingredients are all present in the SM but not in the right amount. B is violated in the SM by
QCD triangle anomaly processes. At zero temperature they are very suppressed and no observable effects
can be measured. However, at high temperatures these transitions can be effective thanks to special field
configurations. These are the so-called sphalerons. Regarding C and CP, they are both violated by the weak
interactions, as we learnt in the previous lecture. In particular, CP is violated in the quark sector due to the
existence of 3 generations, which introduce a CP violating phase in the CKM matrix. However, when one
quantifies the amount of CP violation it is easy to show that this is small, not enough for baryogenesis to be
successful and generate the observed YB . And finally, departure from equilibrium is achieved when the universe
cools down at temperatures around the Fermi scale. At this state the electroweak phase transition takes places.
However, this is again found not to be enough. A Higgs boson with a mass of about ∼ 125 GeV implies that
the phase transition is not of first order, as required for electroweak baryogenesis.

One then concludes that BSM physics is required in order to explain the BAU. Many mechanisms have been
put forward along the years. Here we will just mention one, due to its connection to neutrino masses and the
seesaw mechanism. This is leptogenesis.

Leptogenesis was first proposed by Fukugita and Yanagida [39]. Although the idea can be applied in many
neutrino mass models with lepton number violation, its classical realization is based on the type-I seesaw. The
Yν Yukawa couplings of the singlet right-handed neutrinos are general complex matrices and thus can provide
the necessary additional source of CP violation. Furthermore, the heavy right-handed neutrinos will decay out
of the thermal equilibrium when the decay rate is slower than the expansion rate of the universe, a moment
that is known as their decoupling. Finally, the Majorana mass terms for the right-handed neutrinos violate L,
and thus the dynamics of these decays will generate a lepton asymmetry which can be later converted into a
baryon asymmetry by the sphaleron processes mentioned above, which violate B +L but preserve B −L. As a
result of this, a net baryon asymmetry can be generated.

It is clearly beyond the scope of these lectures to give a quantitative analysis of the baryon asymmetry that
one can achieve in leptogenesis. However, it is instructive to discuss the main elements that play a role. For
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Figure 10: Feynman diagrams leading to 1-loop corrections to the Higgs boson mass.

this purpose, let us consider the simplified case of a lepton asymmetry generated by the lightest heavy neutrino
decay, N1. The baryon asymmetry YB can be approximated as

YB = c
∑
α

εαα ηα Cα . (193)

Here c is a numerical factor, α = e, µ, τ , εαα is the CP asymmetry in the N1 decay, defined as

εαα =
Γ (N1 → Φ`α)− Γ

(
N1 → Φ†`α

)
Γ (N1 → Φ`) + Γ

(
N1 → Φ†`

) . (194)

ηα is the efficiency factor, a generic way to parameterize the effect of the processes taking place in the thermal
bath that tend to reduce the BAU. A simple example is given by the inverse decays, Φ`α → N1, but in general
there may be many other relevant processes. These are known as washout processes. Finally, Cα describes
further reduction of the lepton asymmetry due to fast processes (in thermal equilibrium) which redistribute the
asymmetry that is produced in the `α lepton doublets among other particle species. One can see from expression
(193) that each Sakharov condition introduces a suppression factor. Therefore, one may end up with a tiny
BAU unless all factors are sizable. In practice, this implies constraints on the parameter space of the model.

Before concluding our discussion on leptogenesis let us emphasize its most attractive feature: it provides
a mechanism for the dynamical generation of the BAU that is directly connected to the smallness of neutrino
masses via the seesaw mechanism. This makes leptogenesis a popular subject in current particle physics. For a
more detailed review we recommend [40].

4.3 Theoretical reasons
We will now discuss a completely different of reasons to go beyond the SM: theoretical indications and suggestive
ideas for possible extensions. These, being mor speculative, are less robust than the experimental ones discussed
in Sec. 4.2. Nevertheless, they constitute equally interesting research directions in current particle physics.

The hierarchy problem

The hierarchy problem has been one of the driving forces behind the theoretical developments in the BSM
community for the last decades. As we will see in the next lines, this is not a problem of the SM per se, but a
problem that appears when the SM is supplemented with new physics at energies much higher than the Fermi
scale. This is usually forgotten, leading to a general confusion regarding the hierarchy problem. Therefore, let
us insist once more: if the SM was all physics that exist, there would be no hierarchy problem at all. Only when
we think of the SM as the low-energy limit of a more complete theory including heavier degrees of freedom one
finds the naturalness issue known as hierarchy problem.

The mass of the Higgs boson has been discussed in lecture 2, finding the tree-level result mh =
√
−2µ2.

To this, one has to add radiative corrections coming from the interactions of the Higgs boson with the rest of
particles in the theory. Let us first consider a scalar S with mass mS that couples to the Higgs boson with an
interaction term of the form −λS |h|2|S|2. Then the Feynman diagram in figure 10(a) gives a contribution

(
∆m2

h

)
S
∼ λS

∫
d4p

(2π)4

1

p2 −m2
S

. (195)

By dimensional analysis, this contribution is proportional to m2
S . If the scalar S is a heavy particle, with a

mass much above the electroweak scale, such a quadratic correction will be much larger than the Higgs boson
tree-level mass. Let us now consider a Dirac fermion f with mass mf that couples to the Higgs boson with a
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Yukawa interaction term −λfhf̄PLf + h.c., where PL is the left chirality projector. Then, its contribution to
the Higgs boson mass is given by diagram 10(b) and turns out to be

(
∆m2

h

)
f
∝ −|λf |2

∫
d4p

(2π)4

TR
(p2 −m2

f )2
, (196)

where TR = Tr[(/p+mf )PL(/p+mf )PR] = 2p2. Using this result for the fermionic trace, Eq. (196) splits into

(
∆m2

h

)
f
∝ −|λf |2

∫
d4p

(2π)4

1

p2 −m2
f

+ log , (197)

where log corresponds to a logarithmic integral that can be absorbed by choosing the right renormalization
scale. Again, there is a quadratic correction to the Higgs boson mass that is proportional to m2

f . Analogously
to the case of the scalar diagram, if the fermion f has a large mass mf � mh the correction

(
∆m2

h

)
f
will be

also much larger than the tree-level mass.
The problem appears when we think of the SM as an effective theory obtained at low energies from an

extended model that describes physics at higher energies. For example, if the SM is to be embedded in a Grand
Unification Theory (GUT), the corrections to the Higgs boson mass given by the particles that live at the GUT
scale are, according to equations (195) and (196), proportional to the square of their masses. Since the GUT
scale is expected to be at around mGUT = 1016 GeV (see below), we would have the following 1-loop prediction
for the Higgs boson mass(

m2
h

)
1-loop =− 2µ2 +

(
∆m2

h

)
S

+
(
∆m2

h

)
f

∼ (100GeV)2 + (1016 GeV)2 + (1016 GeV)2 ∼ (100GeV)2 . (198)

With such large quadratic corrections it is hard to understand how the mass of the Higgs boson could be at the
electroweak scale unless a very precise conspiracy among the different contributions from the heavy particles
makes them cancel. This is the famous hierarchy problem.

There are several solutions to the hierarchy problem but, as we did in the previous sections, we will con-
centrate on just one: supersymmetry. It is simple to see how the idea may arise. If we look at Eqs. (195) and
(196), we will immediately note that if

m2
S = m2

f (199)

and
λS = |λf |2 , (200)

the scalar and fermion contributions cancel exactly. For that to happen there must be a reason, a symmetry
that relates fermions and bosons. That symmetry is supersymmetry (SUSY).

The vast SUSY literature makes it hard to go though the main concepts in a limited amount of space. Let
us mainly discuss the basic properties of SUSY models:

• SUSY is a symmetry that relates bosons and fermions. In fact, SUSY implies that for every particle in the
spectrum one must add another one with the same mass but different spin. For instance, the electron must
have a scalar partner (or ”superpartner”), the selectron (ẽ). This leads to a duplication of the particles
when going from a non-SUSY model to a SUSY one.

• However, this poses a problem, since a charged scalar with the mass of the electron would have been already
discovered. This is because, if SUSY is realized in nature, it cannot be an exact symmetry. It must be
broken. This way, particles in the same supermultiplet would have different masses as needed to account
for the non-discovery of the superpartners of the SM fermions. Unfortunately, the way SUSY is broken is
unknown. In practice, this ignorance is solved by introducing by hand new terms in the Lagrangian that
break SUSY explicitly but preserve the solution that SUSY offers for the hierarchy problem.

• Supersymmetric models are typically supplemented with a discrete symmetry called R-parity. All super-
particles (like the selectron) have R-parity −1, while the SM particles have R-parity +1. This parity,
introduced in order to forbid some dangerous L and B violating interactions, also serves to stabilize the
lightest supersymmetric particle (LSP), which in this way can be used as a DM candidate provided it is
neutral and colorless. Furthermore, the conservation of R-parity also leads to characteristic signatures at
colliders, with the requirement that all superparticles must be produced in pairs and with the presence of
large amounts of missing energy in all SUSY events.
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Figure 11: MSSM particle content. We note that the usual SM Higgs doublet Φ is actually duplicated in the
MSSM, with the existence of the doublets Hu and Hd (and the corresponding superpartners H̃u and H̃d).

Figure 12: Running of the gauge couplings in the SM (left) and the MSSM (right). The curves show the
evolution of α−1

i , where αi =
g2i
4π , g1 =

√
5/3 g′, g2 = g and g3 = gs. This figure includes contributions to the

running up to the 1-loop level.

The simplest (and realistic) supersymmetric model is the Minimal Supersymmetric Standard Model (MSSM)
[41], whose particle content is represented in Fig. 11. Many extensions of this model exist, with additional
“superfields” (as we call SUSY multiplets containing a particle and its superpartner) and/or symmetries 8.

Although the theoretical motivation for SUSY is strong, the experimental results do not favor it. Many
SUSY searches have been performed at the Large Hadron Collider (LHC), finding no hint of it. This has been
used to establish stringent bounds on the masses of the superparticles, which in some cases are pushed clearly
above the TeV scale. This is of course fine in what concerns the consistency of the theory, as no upper bound on
the superparticles masses can be derived from first principles. However, it weakens the motivation for SUSY,
since a large mass splitting between the SM particles and their superpartners reintroduces a certain amount of
hierarchy problem.

Unification

One of the most interesting predictions of QFT is the dependence of the interaction strength with the energy.
Some interactions become weaker at high energies while others become stronger. A famous example of this
phenomenom is asymptotic freedom, a property of QCD discovered by Gross, Wilczek and Politzer [42, 43] in
1973, which implies that the strong interactions become asymptotically weaker as energy increases.

The question is: what happens to the three SM gauge couplings, g, g′ and gs, at high energies? Do they
approach a common value or they split never to meet again? This is illustrated in Fig. 12. The running depends
on the particle content of the model, and therefore it is different in the SM and the MSSM. In both cases they
approach a common region at high energies. However, while in the SM case they do not match at a single
point, in the MSSM the coincidence at energies around ∼ 1016 GeV is quite good. This suggests an interesting
possibility: the three gauge groups of the SM, SU(3)c, SU(2)L and U(1)Y , may be unified in a single group
GGUT above the unification scale. As we see, this possibility is more favorable in the MSSM than in the SM.
Then, after SSB of GGUT, the unified force is not unified anymore, and the three symmetry groups of the SM
become independent. At low energies they appear to be very different due to the large energy gap from the
GUT scale down to the Fermi scale, which leads to sizable individual runnings. This is Grand Unification.

8In fact, neutrinos are massless in the MSSM, in the same way they are in the SM. Therefore, neutrino masses and mixings call
for an extension of the MSSM, and the known non-SUSY solutions can be applied in the supersymmetric case as well.
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There are many Grand Unified Theories (GUTs), with different symmetry groups and fields, but they all
share some common properties:

• The SM gauge group is a subgroup of GGUT.

• The SM particles are embedded into larger multiplets, with definite transformation properties underGGUT.

• In some cases, the embedding requires the addition of new particles, which allow to complete the multiplets,
while in other cases the SM multiplets are combined (grouped) to form larger multiplets.

• The breaking of the GUT symmetry is realized in the same way as in the SM: by the Higgs mechanism.
This implies the introduction of large scalar multiplets with VEVs of the order of the new energy scale
mGUT ∼ 1016.

The most popular GUTs are those based on the SU(5) [44] and SO(10) [45,46] groups. These are complicated
theoretical constructions and we will not review them here. However, let us just mention one attractive feature
of GUT models: charge quantization.

The fact that qe + qp = 0, with qe the electric charge of the electron and qp the electric charge of the
proton, does not have an explanation within the SM. The electric charges of the quarks and leptons could be
different, not necessarily integer multiples of 1/3, and this equality would not hold. Moreover, this relation is
more surprising given that they are in different SM multiplets. What about in a unified model in which they
are embedded in the same multiplet? In fact, in unified models the quantum numbers of quarks and leptons are
related by the gauge symmetry, in the same way the neutrino and electron (or up and down quarks) quantum
numbers are related in the SM. This connection automatically leads to the quantization of charge or, in other
words, to qe + qp = 0. This elegant postdiction of GUT models is one of their most appealing properties.

The most clear experimental prediction of GUTs is proton decay. Since leptons and quarks are embedded in
the same GUT multiplets, the GUT gauge bosons mediate L and B violating interactions. Therefore, processes
like p→ e+π0 should be possible. However, and despite the experimental efforts in the search for proton decay,
this has never been observed.

The flavor problem

The fermionic content of the SM consists of 3 copies of the same set of states. These 3 generations or families
have exactly the same gauge quantum numbers and only differ by their Yukawa couplings to the Higgs doublet.
This raises three fundamental questions:

• Why are there 3 fermionic replicas?

• What is the origin of the quark and lepton masses?

• What is the origin of the observed patterns of the Yukawa couplings?

The first question is due to the fact that the SM would be perfectly consistent with only one fermion family.
Therefore, there is no clue in the SM itself about the reason for 3 generations, and not any other specific number.
Figure 8 is at the origin of the second question: why the top quark is about 6 orders of magnitude heavier than
the electron? Finally, the motivation for the third question can be visualized more easily by looking at the
measured structure of the CKM and PMNS matrices. Numerically, the absolute values of the CKM matrix
elements have been measured to be [47] (we only give central values)

|VCKM| =


0.974254 0.22542 0.003714

0.22529 0.973394 0.04180

0.008676 0.04107 0.999118

 . (201)

We see that the CKM matrix is almost diagonal, implying that the angles defined in Eq. (166) are small. On the
other hand, the PMNS matrix does not have any clear structure, with the three mixing angles being large [48]
(again, we only give central values)

|VPMNS| =


0.813449 0.561872 0.150333

0.467118 0.47709 0.744437

0.346556 0.675785 0.650549

 . (202)

These open questions, which the SM cannot address, are usually referred to as the flavor problem.
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Figure 13: An illustrative diagram showing the action of flavor (“horizontal”) symmetries and gauge (“vertical”)
symmetries, such as those in GUT models.

Again, there are many ideas to address these issues. The most popular ones involve “flavor symmetries”,
symmetries that instead of acting vertically on different types of fermions, act horizontaly by grouping together
fermions of the same type within different families. For example, one can embed the 3 fermion families in
SU(3)f triplets. By properly breaking the symmetry one can aim at inducing the observed fermion mixing
patterns and, more ambitiously, to explain the structure and hierarchies of the Yukawa couplings.

4.4 Summary of the lecture
In this last lecture we have discussed several SM problems and some popular solutions put forward to address
them. First, we concentrated on experimental problems, this is, problems that have been revealed by experi-
mental measurements. These simply cannot be ignored. And second, we discussed several theoretical problems
and indications, less robust but equally interesting in our search for a new physics paradigm beyond the SM.

4.5 Exercises
Exercise 3.1 The Type-II Seesaw. Consider an extension of the SM by a scalar ∆ with quantum numbers
(1, 3)1 under the SM gauge group and decomposed in SU(2)L components as

∆ =


∆++

∆+

∆0

 . (203)

Write the most general Lagrangian allowed by the SM gauge symmetry and show that a non-zero 〈∆0〉 induces
Majorana masses for the left-handed neutrinos.

Exercise 3.2 Consider the running of the gauge couplings in the SM and in the MSSM and reproduce the
results of Fig. 12. For this purpose use the renormalization group equation

d

dt
α−1
i = − bi

2π
. (204)

Here t = logQ and Q is the renormalization scale. The bi coefficients are given by

(b1, b2, b3) =

 (41/10,−19/6,−7) SM

(33/5, 1,−3) MSSM
, (205)

and we have defined αi =
g2i
4π , g1 =

√
5/3 g′, g2 = g and g3 = gs.
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