
2 Lecture 1: Towards the Standard Model

2.1 Weak phenomena and first theories for the weak interactions
We will begin by discussing the first steps towards the SM, given in the first half of the last century with the
proposal of several theories for the weak interactions. As we will see, these were based on crucial experimental
discoveries which served as guiding tools towards the correct theoretical ideas.

Experimental facts

Several important discoveries pawed the way for the construction of a theory for the weak interactions.

β-decay The discovery of radioactivity by Becquerel in 1896 can be regarded as the discovery (or at least the
first step towards) the weak interactions. Later, in 1914, Chardwick showed that the electrons produced in β-
decay have a continuous spectrum, a fact that was explained by Pauli in 1930 with the neutrino hypothesis [7]. In
1934, Fermi published a landmark theory for β-decay [8,9], based on his famous 4-fermion interaction Lagrangian

L = −GF√
2
pγµn eγ

µν + h.c. , (1)

where GF = 1.166 · 10−5 GeV−2 is the so-called Fermi constant.

µ and π decays Muons and pions were found in cosmic rays experiments in the 30’s and 40’s, respectively.
Among other interesting properties, they were found to have, like β-decays, comparatively long lifetimes,

τ(µ±) = 2.2 · 10−6 s , τ(π±) = 2.6 · 10−8 s . (2)

Even though these lifetimes may seem quite short, they are in fact orders of magnitude longer than the typical
lifetime for strong decays, τs ∼ 10−23 s. The fact that a number of particle decays had similarly long lifetimes was
a remarkable observation. Eventually, the concept of a distinctive class of interactions, the “weak interactions”,
began to emerge. These were characterized by being short-range and much weaker than the electromagnetic
and strong interactions.

Lepton number and lepton flavor conservation It was also observed that the neutrinos associated to the
electron and the muon conserved flavors and thus were two different particles. While processes like

νµX → µ−X ′ (3)

are possible, the analogous
νµX → e−X ′ (4)

are not (here X and X ′ are not leptons). Similarly, the number of leptons was found to be a conserved quantity.

Parity violation Several experimental results showed that the weak interactions violate parity. First, two
different decays were found for charged strange mesons

θ+ → π+π0 , (5)

τ+ → π+π+π− . (6)

Since the intrinsic parity of a pion is Pπ = −1, the two final states have different parity. For this reason,
it was initially thought that the θ and τ mesons were two different particles. However, increasingly precise
experiments were unable to find any difference between their masses and lifetimes, suggesting that they were
the same particle. This was the so-called θ − τ puzzle. Nowadays we know that this particle is the K+ meson,
which can decay violating parity via the weak interactions, as originally suggested by Lee and Yang in 1956
as possible solution to the puzzle [10]. The confirmation of this idea came one year later, in 1957, with the
celebrated discovery by Wu of parity violation in the β-decay of Cobalt-60 nuclei [11] 1. This indicates that a
theory based on 4-fermion contact interactions, such as Fermi’s, should contain γ5 matrices in the interaction
terms, as these distinguish between left (L) and right (R) fermion chiralities.

1Other experiments performed in the next couple of years confirmed this result and showed that the electrons emitted in weak
interactions are mostly left-handed, clearly violating parity.
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Strangeness violating decays Decays with violation of strangeness, such as

K → π`−ν` , (7)

Λ→ pe−νe , (8)

present two remarkable features: (i) the strength is the same in all decays but smaller than in the ∆S = 0
processes (like π → µ−νµ), with G∆S=1 ' 0.22GF , and (ii) all decays satisfy the ∆S = ∆Q rule (in the
hadronic part of the decay), so that processes like Σ+ → ne+νe never occur.

The V-A theory

It was soon realized by several theorists (Feynman, Gell-Mann, Sudarshan, Marshak, Sakurai . . . ) that all
previous experimental facts can be described by

LV-A = −GF√
2
J†αJ

α + h.c. , (9)

with the weak current Jα being of the vector-minus-axial (V-A) form. This is the important V-A theory for
the weak interactions.

More explicitly, Jα can be split into leptonic and hadronic parts,

Jα = Jα` + Jαh . (10)

Therefore, the LV-A Lagrangian can be used to describe leptonic, semi-leptonic and purely hadronic processes.
The leptonic current is simply given by

Jα` = νeγ
α(1− γ5)e+ νµγ

α(1− γ5)µ , (11)

whereas the hadronic current is written in terms of quarks as

Jαq = uγα(1− γ5) (cos θcd+ sin θcs) . (12)

Here θc is the Cabibbo angle, introduced by Cabibbo to recover the universality of the weak interactions in
∆S = 1 transitions [12]. In fact, one finds

G∆S=0 = cos θcGF ' 0.97GF (13)
G∆S=1 = sin θcGF ' 0.22GF (14)

since sin θc is measured to be about 0.22.
There are a couple of properties of the V-A theory worth emphasizing:

• It only involves left-handed fermions:

Using the standard definition of the chirality projectors PL,R = 1
2 (1∓ γ5), one finds

ψγµ(1− γ5)ψ ≡ 2ψLγµψL . (15)

explicitly showing that only left-handed fermions participate in the weak interactions. This is equivalent to the
well-known rule that “parity is maximally violated in the weak interactions”, since only one of the chiralities
takes of part of them.

• It is written in terms of charged currents, all with one unit of charge. In fact, in the lowest order in
perturbation theory (tree-level) there are no neutral current processes such as νµX → νµX.

If we restrict the application of the V-A theory to the leading order in GF , it is able to describe correctly a
vast amount of low-energy weak-interaction data involving processes of many types:

• β-decay (also inverse): n→ pe−νe, e−p→ νen.

• µ, τ decays: µ− → e−νeνµ, τ− → µ−νµντ , τ− → ντπ
−, . . .

• π, K decays: π+ → µ+νµ, π+ → π0e+νe, K+π+π0, . . .

• Hyperon decays: Λ→ pπ−, . . .

• ν scattering: νµe− → µ−νe, . . .

However, the V-A theory cannot be considered as a consistent QFT of the weak interactions. There are two
reasons for this:
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Figure 1: 1-loop contribution to inverse muon decay in the V-A theory.

1) Violation of unitarity The coupling constant GF has dimension (mass)−2. Any amplitude that contains
one 4-fermion interaction will be proportional toGF , so cross-sections will be proportional toG2

F , with dimension
(mass)−4. Since these must have units of (mass)−2, the dimensions must be compensated by the square of the
characteristic energy in the process. In short, dimensional analysis tells us that

σ ∼ G2
F s . (16)

This is not acceptable for arbitrarily large s, since the cross-section is bounded by the fact that the probability of
any two particles to scatter cannot exceed 1. If it grows with energy, eventually this bound, known as unitarity
bound, will be violated.

Indeed, the V-A theory violates unitarity at relatively low energies. For instance, inverse muon decay,

νµe
− → µ−νe , (17)

violates unitarity at
√
s ∼ 300 GeV.

2) Lack of renormalizability One may hope that unitarity is restored by including higher (loop) correc-
tions, such as that shown in Fig. 1. However, this is not the case. In fact, higher-order contributions are
increasingly divergent, with infinities that cannot be absorbed in the parameters of the model. As a conse-
quence of this, the V-A theory is not renormalizable and cannot be used beyond leading order. We note that
this is again related to the Fermi constant’s dimensionality, which is (mass)−2.

Therefore, even though the V-A theory can correctly account for a large domain of weak phenomena, it
cannot be “the theory” of weak interactions.

The intermediate vector boson (IVB) theory

In Quantum ElectroDynamics (QED), the fundamental γēe interaction generates a long-range 4-fermion inter-
action through γ-exchange. One can try to generate 4-fermion weak interactions in a similar way.

This idea was first put forward by Schwinger, and independently by Lee and Yang, who introduced the
so-called intermediate vector boson (IVB) theory. In this case the Lagrangian is given by

LIVB =
g

2
√

2

(
JµW+

µ + h.c.
)
, (18)

where Wµ is a new massive (since the weak interactions are short-range) charged spin-1 field.
The V-A theory can be seen as the low-energy limit of the IVB theory. This can be easily understood by

looking at the amplitudes for a given 4-fermion process in both theories. Let us consider, for instance, muon
decay. In this case one gets

MV-A =
GF√

2
J†α(µ)Jα(e) , (19)

MIVB =
g

2
√

2
J†α(µ)

−gαβ +
qαqβ
m2
W

q2 −m2
W

g

2
√

2
J†β(e) , (20)

where Jα(e, µ) are the leptonic currents and q is the 4-momentum of the W boson exchanged between th two
currents in the IVB theory. At low energies, q2 � m2

W , the W boson propagator becomes

−gαβ +
qαqβ
m2
W

q2 −m2
W

q2�m2
W−−−−−→ gαβ

m2
W

, (21)
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Figure 2: Muon decay in the V-A and IVB theories. The diagram on the right (V-A theory) is obtained by
collapsing the W propagator in the diagram on the left (IVB theory) to a point.

and therefore

MIVB
q2�m2

W−−−−−→ g2

8m2
W

J†α(µ)Jα(e) , (22)

which then allows us to identify
g2

8m2
W

=
GF√

2
. (23)

Graphically, this can be represented by the collapse of the W propagator to a point, leading to the well-known
amplitude, as shown in Fig. 2.

Let us now consider the problems of the V-A theory. Are they solved in the IVB theory?

1. The problem with unitarity remains. Although the behavior in νµe
− → µ−νe clearly improves and

unitarity is preserved up to very high energies (∼ 1015 GeV), the problem appears for example in the
reaction νν̄ → W+

LW
−
L , where WL denotes a longitudinally polarized W boson. Again, unitarity is

violated at quite low energies, as in the V-A theory.

2. Even though g is now a dimensionless coupling, the IVB theory is not renormalizable either. The problem
is caused by the qµqν/m2

W piece in the W propagator. At high energies,

−gµν +
qµqν
m2
W

q2 −m2
W

q2→∞−−−−→ constant , (24)

and the interaction is not renormalizable by power counting.

We conclude that although the IVB theory improves with respect to the V-A theory, the known problems still
remain. One of the key issues seems to be the introduction of aW boson mass without spoiling renormalizability.
As we will see, this will be possible in a gauge theory with spontaneous symmetry breaking.

2.2 Gauge theories
Symmetries play a crucial role in particle physics. We will now study one of the most important ideas that led
to the development of the SM: gauge invariance.

Abelian gauge theory – QED

QED is an Abelian gauge theory. It is instructive to see how the theory can be derived by requiring the Dirac
free electron theory to be invariant under local transformations.

Let us consider the Lagrangian for a free electron

L0 = ψ(x) (iγµ∂µ −m)ψ(x) . (25)

It has a global U(1) symmetry due to the invariance of L0 under a phase transformation,

ψ(x) → ψ′(x) = e−iαψ(x) (26)

ψ(x) → ψ
′
(x) = eiαψ(x) . (27)
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This transformation is said to be “global”, since the field is transformed exactly in the same way in the whole
universe. It makes sense to think that fundamental symmetries should be “local” (or “gauge”), with parameters
depending on the coordinates. This is the gauge principle [13]. Therefore, let us gauge the theory replacing α
by α(x),

ψ(x) → ψ′(x) = e−iα(x)ψ(x) (28)

ψ(x) → ψ
′
(x) = eiα(x)ψ(x) . (29)

It is obvious that the derivative term spoils the invariance. In fact, we find

ψ(x)∂µψ(x) → ψ
′
(x)∂µψ

′(x) = ψ(x)eiα(x)∂µ

(
e−iα(x)ψ(x)

)
= ψ(x)∂µψ(x)− i ψ(x)∂µα(x)ψ(x)

6= ψ(x)∂µψ(x) . (30)

In order to recover the invariance we must replace the usual derivative ∂µ by a covariant derivative Dµ that
transforms like the field

Dµψ(x) → (Dµψ(x))
′

= e−iα(x)ψ(x) , (31)

so that invariance is trivially recovered

ψ(x)Dµψ(x) → ψ
′
(x) (Dµψ(x))

′
= ψ(x)Dµψ(x) . (32)

This can be done by enlarging the theory with a new vector field Aµ(x), the “gauge field”, so that the covariant
derivative is

Dµ = ∂µ + ieAµ , (33)

where e is a free parameter. Then, the transformation law for the covariant derivative will be satisfied if Aµ(x)
has the transformation property

Aµ(x) → A′µ(x) = Aµ(x) +
1

e
∂µα(x) . (34)

With this, we have found that the Lagrangian

L′0 = ψiγµ (∂µ + ieAµ)ψ −mψψ (35)

is invariant under local U(1) transformations. However, to make the gauge field a truly dynamical variable, we
must add a kinetic term for Aµ, this is, a term involving its derivatives. It must be quadratic in the field and
gauge invariant. The only term one can build with these properties is

LA = −1

4
FµνF

µν , (36)

where the 1/4 factor is introduced to get the conventional normalization for the kinetic term and we have defined

Fµν = ∂µAν − ∂νAµ . (37)

It is straightforward to show that Fµν is gauge invariant by itself, and then LA obviously is invariant as well.
Combining all these ingredients we arrive at the celebrated QED Lagrangian

LQED = ψiγµ (∂µ + ieAµ)ψ −mψψ − 1

4
FµνF

µν . (38)

This Lagrangian is absolutely successful describing electromagnetic interactions. Let us make some brief remarks
about its properties:

• It describes the interaction of a q = −1 particle with the photon. Generalization to a more general charge
q is obtained by replacing the transformation in Eqs. (28) and (29) by ψ → exp (iqα(x))ψ.

• The photon (Aµ) is massless because a AµAµ term is not gauge invariant.

• The minimal coupling of the photon is contained in the covariant derivative Dµψ. In other words: the
interactions are determined by the gauge symmetry.

• The gauge field does not have self-interactions.

U(1) is an Abelian symmetry group: rephasings conmute. We will now see how the gauge principle can be
applied in the non-Abelian case.
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Non-Abelian gauge theories – Yang-Mills theories

In 1954 Yang and Mills extended the gauge principle to non-Abelian symmetry groups [14]. We will now
illustrate this for SU(2), the group of 2× 2 unitary matrices with determinant equal to 1.

A detailed (and rigurous) treatment of Lie groups and their application to particle physics is clearly beyond
the scope of this course. For this reason, let us simply focus on their most relevant features for the construction
of the SM by looking at a simple example. Consider the doublet of fermions

ψ =

 ψ1

ψ2

 . (39)

Similarly to the U(1) transformations in Eqs. (28) and (29), one can define an SU(2) transformation acting on
ψ as

ψ → ψ′ = U(θ)ψ , (40)

with

U(θ) = exp

(
− i~τ

~θ

2

)
. (41)

Here ~θ = (θ1, θ2, θ3) are the SU(2) transformation parameters and ~τ = (τ1, τ2, τ3) are the Pauli matrices. Indeed,
the generators of SU(2) for the doublet representation are Ti = τi/2, with i = 1, 2, 3. They satisfy the SU(2)
algebra [τi

2
,
τj
2

]
= i εijk

τk
2
, (42)

where εijk is the completely antisymmetric Levi-Civita tensor. The fact that these conmutators are not zero is
what makes SU(2) a non-Abelian symmetry group. After learning how ψ transforms under SU(2) it is easy to
show that the free Lagrangian

L0 = ψ(x) (iγµ∂µ −m)ψ(x) (43)

is invariant under a global SU(2) transformation in which the θi parameters are constants. However, when
θi = θi(x), one finds that L0 is no longer invariant, again due to the derivative term:

ψ(x)∂µψ(x) → ψ
′
(x)∂µψ

′(x) = ψ(x)U−1(θ)∂µ (U(θ)ψ(x))

6= ψ(x)∂µψ(x) . (44)

To construct a gauge invariant Lagrangian we follow the same procedure as for the Abelian case. We replace
the derivative ∂µ by a covariant derivative Dµ, defined as

Dµ = ∂µ − ig
~τ ~Aµ

2
, (45)

where g is a coupling constant and we have introduced the vector bosons Aiµ, i = 1, 2, 3, one for each group
generator. We now demand that Dµψ transforms in the same way ψ does

Dµψ(x) → (Dµψ(x))
′

= U(θ)ψ(x) , (46)

which implies (
∂µ − i g

~τ ~A′µ
2

)
(U(θ)ψ) = U(θ)

(
∂µ − i g

~τ ~Aµ
2

)
ψ , (47)

or, equivalently
~τ ~A′µ

2
= U(θ)

[
~τ ~Aµ

2
+
i

g
∂µ

]
U−1(θ) , (48)

which defines the transformation law for the gauge fields. For an infinitesimal change θi � 1 one can easily
solve this relation and find

Aiµ → Ai ′µ = Aiµ + εijkθjAkµ −
1

g
∂µθ

i . (49)

The second term is new when we compare to the results obtained for the Abelian case. In fact, this term is
the transformation of an SU(2) triplet (the adjoint representation of SU(2)). Thus, we see that in contrast to
the Abelian case, the Aiµ gauge fields are charged under the symmetry group. As we will find below, this will
necessarily imply that the Aiµ vectors have self-interactions.
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We must now find the correct kinetic term for the gauge fields. This can be done by generalizing the strength
tensor Fµν of the U(1) interactions. In that simple case it is easy to check that

(DµDν −DνDµ)ψ = ieFµνψ . (50)

Therefore, we can generalize it to the non-Abelian case as

(DµDν −DνDµ)ψ = ig
τi
2
F iµνψ . (51)

Expanding this expression one finds

F iµν = ∂µA
i
ν − ∂νAiµ + gεijkAjµA

k
ν . (52)

Now, even though F iµν is not gauge invariant, the combination F iµνF
µν
i is. We can then summarize the above

discussion. The complete gauge invariant Lagrangian that describes the interaction of the Aiµ gauge fields with
the ψ SU(2) doublet is

LYM = ψiγµDµψ −mψψ −
1

4
F iµνF

µν
i . (53)

This is the Yang-Mills Lagrangian for SU(2). Let us make some remarks:

• The Aiµ gauge fields are massless, as in the Abelian case, because their mass terms would break the SU(2)
symmetry.

• The interactions are again dictated by the gauge principle.

• In contrast to the Abelian case, the Aiµ fields have self-interactions. This can be seen by expanding the
pure gauge term

− 1

4
F iµνF

µν
i ⊃ −gεijk∂µAiνAj µAk ν −

g2

4
εijkεimnAjµA

k
νA

mµAn ν , (54)

which gives rise to cubic and quartic interactions.

The previous discussion can be generalized to higher groups and arbitrary representations for ψ. This is
done by replacing τi/2 by the corresponding generators Ti and εijk by the corresponding structure constants
fijk of the gauge group.

Previously, we had seen that the development of a theory for the weak interactions eventually led to the idea
of an IVB. Could this vector be a gauge field? The main obstacle seems to be the need for a non-zero mass:
while gauge fields are restricted to be massless, an IVB for the weak interactions must be massive in order to
explain why these are short-range. These two conflicting facts can be consistently combined with an additional
ingredient: spontaneous symmetry breaking.

2.3 Spontaneous symmetry breaking
The imposition of a gauge symmetry implies the existence of massless vector bosons. If we want to avoid
this feature and obtain massive vector bosons to describe the weak interactions the symmetry must be broken
somehow. We could for example add a mass term for the gauge bosons by hand. This type of breaking is
called explicit. In addition to being quite inelegant, this solution is known to alter the high-energy behavior of
the theory, again spoiling renormalizability. Therefore, we must resort to a different mechanism to break the
symmetry and generate the gauge boson masses: spontaneous symmetry breaking (SSB).

SSB is a well-known phenomenom in many areas of physics. A simple system that allows for an intuitive
understanding is a pencil standing on its tip. Such a system exhibits a clear axial symmetry, since rotations
around the pencil axis leave it invariant. However, a pencil on its tip is not a stable minimum energy con-
figuration. Any perturbation will eventually make the pencil fall in one specific direction. Even though all
directions are completely equivalent (due to the axial symmetry), choosing one of them breaks the symmetry
“spontaneously”.

A similar phenomenom is observed in numerous physical systems, fully invariant under a symmetry that is
not preserved by the ground state. This is the idea behind the Higgs mechanism in the SM. But before we
consider SSB in gauge theories, let us see what happens when a global continuous symmetry gets spontaneously
broken.
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Figure 3: A pencil standing on its tip is a system with a perfect axial symmetry. All directions are completely
equivalent. Eventually, the pencil falls over, choosing one specific direction. We say that the symmetry has
been spontaneously broken.

SSB of a global continuous symmetry – The Goldstone theorem

Let us analyze the case of a self-interacting complex scalar field,

L = ∂µφ
∗∂µφ− V (φ) , (55)

with the scalar potential
V (φ) = µ2|φ|2 + λ|φ|4 . (56)

This Lagrangian is invariant under the global transformation

φ → φ′ = e−iθφ . (57)

Therefore, the system exhibits a global continuous symmetry. For instance, we note that cubic terms such as
φ3 are absent, as they would be forbidden by the symmetry.

Let us split the complex field into its real and imaginary parts

φ =
1√
2

(φ1 + i φ2) , (58)

so that φ1,2 are real fields. In terms of these fields, the Lagrangian becomes

L =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2)− V (φ1, φ2) , (59)

with

V (φ1, φ2) =
µ2

2

(
φ2

1 + φ2
2

)
+
λ

4

(
φ2

1 + φ2
2

)2
. (60)

This Lagrangian is now invariant under SO(2) rotations between φ1 and φ2, φ1

φ2

 →

 φ′1

φ′2

 =

 cos θ − sin θ

sin θ cos θ

 φ1

φ2

 , (61)

which are completely equivalent to the original rephasing transformations.
Now the question is: where is the minimum of the scalar potential? First, we note that λ should be positive

to guarantee that the potential (and hence the Hamiltonian of the theory) is bounded from below. Otherwise,
if λ < 0, φi →∞ would lead to V → −∞, making impossible to define the ground state. For λ > 0 the location
of the minimum depends on the sign of µ2. For µ2 > 0 we just have one minimum in 〈φ1〉 = 〈φ2〉 = 0. Here 〈φi〉
denotes the value of the scalar field φi at the minimum of the potential, also known as its vacuum expectation
value (VEV). More interestingly, for µ2 < 0 (“wrong” sign for the mass term) we have a continuum of distinct
minima (or “vacua”) located at

〈|φ|2〉 =
1

2

(
〈φ2

1〉+ 〈φ2
2〉
)

= −µ
2

2λ
≡ v2

2
. (62)

as shown in Fig. 4. These vacua form a circumference around the origin and thus exhibit the SO(2) symmetry
of the model. Now we must give an important conceptual step. In QFT we are interested in perturbations
around the ground state (the vacuum), whose energy is exactly zero. Therefore, we must redefine the scalar
fields in our theory in such a way that the new physical fields have vanishing VEVs. In order to do that we
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Figure 4: The scalar potential for µ2 < 0. This scalar potential is known as the “Mexican hat” potential.

must choose a specific minimum of the potential, which in turn selects a specific ground state of the theory.
And this is where SSB takes place. Since the Lagrangian is invariant under SO(2), all minima are equivalent.
However, once the choice is made, the symmetry gets spontaneously broken since the Lagrangian is invariant
but the selected vacuum (〈φ〉) is not.

Let us choose the minimum with

〈φ1〉 = v =

√
−µ2

λ
, (63)

〈φ2〉 = 0 . (64)

We define new fields, suitable for calculations in QFT,

φ0
1 = φ1 − v , (65)

φ0
2 = φ2 . (66)

In terms of the new fields the Lagrangian becomes

L =
1

2

(
∂µφ

0
1∂
µφ0

1 + ∂µφ
0
2∂
µφ0

2

)
− 1

2

(
−2µ2

) (
φ0

1

)2
+ interactions . (67)

We see that φ0
1 has a real and positive mass (−2µ2 > 0), whereas φ0

2 is massless since the Lagrangian does not
contain any quadratic term in φ0

2. Moreover, the interaction terms include cubic interactions such as
(
φ0

1

)3,
originally forbidden.

This is an example of the Goldstone theorem [15] (1961, Goldstone), which states that when an exact
continuous global symmetry is spontaneously broken, the theory contains a massless scalar particle for each
broken generator of the original symmetry. These massless scalars are called Goldstone bosons.

SSB of a gauge symmetry – The Higgs mechanism

In 1964 several authors (including Guralnik, Hagen, Kibble, Higgs, Brout, Englert and others, see [16–19])
independently found a way out of the Goldstone theorem: a field theory with SSB but without Goldstone
bosons. The trick consists in making the symmetry local instead of global. As a bonus, the gauge bosons
become massive. This is the so-called Higgs mechanism.

In order to illustrate it let us consider an Abelian gauge theory. Let φ be the complex scalar field of the
previous example. In order to get a Lagrangian for φ invariant under the local transformation

φ → φ′ = e−iθ(x)φ (68)

we must introduce a covariant derivative Dµ exactly in the same way as we did when we obtained the QED
Lagrangian,

Dµ = ∂µ + ieAµ . (69)

Replacing ∂µ → Dµ, the Lagrangian becomes

L = Dµφ
∗Dµφ− V (φ)− 1

4
FµνF

µν , (70)

where we already added the kinetic term for the gauge field Aµ. V (φ) is the same as in Eq. (56). Therefore,

for µ2 < 0 the minimum of the potential is not found at 〈φ〉 = 0, but at 〈|φ|〉 = v =
√
−µ2

λ . We could now split
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φ into its real and imaginary parts and proceed similarly, applying the shift φ = φ0
1 + v to introduce physical

fields that allow to define a proper QFT based on perturbations around the ground state. However, it proves
more convenient (the resulting expressions are more transparent) to parameterize φ as

φ =
1√
2

(
φ0

1 + v
)

exp

(
i
φ0

2

v

)
. (71)

φ0
1 represents the modulus of φ, already shifted with respect to the chosen minimum, and φ0

2 represents the
phase, properly normalized. Plugging this expression into L one finds

L =
1

2

(
∂µφ

0
1∂
µφ0

1 + ∂µφ
0
2∂
µφ0

2

)
− 1

4
FµνF

µν − 1

2

(
−2µ2

) (
φ0

1

)2
+
e2v2

2
AµA

µ

+ evAµ∂
µφ0

2 + interactions . (72)

This Lagrangian includes a scalar field φ0
1 with mass m(φ0

1) =
√
−2µ2, a massless scalar φ0

2 (the Goldstone
boson) and a massive evector boson Aµ, with mass m(A) = ev. However, the presence of the Aµ∂µφ0

2 mixes
the Aµ and φ0

2 propagators and complicates the interpretation. We can get rid of this term by making use of
the gauge freedom. In order to eliminate it we make the gauge transformation

φ → φ′ = e−iθ(x)φ, with θ(x) =
1

v
φ0

2(x) , (73)

which implies, using the parameterization of φ introduced in Eq. (71),

φ′ = exp

(
−i φ

0
2

v

)
× 1√

2

(
φ0

1 + v
)

exp

(
i
φ0

2

v

)
=

1√
2

(
φ0

1 + v
)
. (74)

In this particular gauge (called unitary gauge) the Goldstone boson disappears and we get

L =
1

2
∂µφ

0
1∂
µφ0

1 −
1

4
FµνF

µν − 1

2

(
−2µ2

) (
φ0

1

)2
+
e2v2

2
AµA

µ

+ interactions . (75)

As anticipated, the resulting theory constains a massive scalar φ0
1 and, more importantly, a massive gauge boson

Aµ. Furthermore, the φ0
2 field, which we identified as the Goldstone boson, has disappeared. This is the Higgs

mechanism: the SSB of a gauge theory leads to massive gauge bosons in a consistent and elegant manner.
To better understand where the Goldstone boson has gone we can count the degrees of freedom (d.o.f.) of

the theory in the initial and final Lagrangians:

Initial L
φ charged scalar: 2

Aµ massless vector: 2

4

Final L
φ0

1 real scalar: 1

Aµ massive vector: 3

4

As we can see, the d.o.f. of the Goldstone boson has been absorbed by th gauge boson, that acquires a
mass. In fact, the Goldstone boson has turned into the longitudinal component of Aµ, the new d.o.f. that has
acquired after becoming massive. We say that φ0

2 has been “eaten up” by Aµ.
This mechanism can be easily generalized to non-Abelian gauge theories and is at the heart of the SM, where

it is used to give a mass to the W and Z bosons, as we will learn in the next lecture.

2.4 Summary of the lecture
In this lecture we have reviewed the basic ingredients that are required to construct the SM. After discussing
the most relevant pre-SM theories of the weak interactions and studying where they failed, we moved on to
the discussion of gauge theories (Abelian and non-Abelian) and spontaneous symmetry breaking. With these
elements we are now in position to build the SM.

2.5 Exercises
Exercise 1.1 Inverse muon decay (νµe− → µ−νe) in the V-A theory. Show that unitarity is violated at√
s ∼ 300 GeV.
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Exercise 1.2 Neutrino scattering into longitudinal W -bosons (νeνe →W+
LW

−
L ) in the IVB theory. Consider

the high-energy limit and show that it violates unitarity.
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